【題目】如圖,正方形中, ,點(diǎn)在邊上,且,沿翻折至,延長交邊于點(diǎn),連接、

1)求證:

2)求證:;

3)求的面積.

【答案】(1)證明見解析;(2)證明見解析;(3)

【解析】

1)由軸對稱可以得出AF=AD,∠D=AFE=90°,得出∠AFG=90°,根據(jù)正方形的性質(zhì)可以得出AF=AB,根據(jù)HL就可以判斷△ABG≌△AFG
2)由條件可以求出ED的值,設(shè)FG=x,則BG=FG=x,CG=6-x,EG=x+2,由勾股定理可以求出x的值,從而可以求出BGCG的值,得出結(jié)論.
3)過點(diǎn)FFNCG于點(diǎn)N,可以得出∠FNG=DCG=90°,通過證明△GFN∽△GEC,得出,可以求出FN的值,最后利用三角形的面積公式可以求出其面積.

1)證明:∵四邊形是正方形,

,,

∵將對折得到,

,,

又∵,

2)證明: ,

,

,

設(shè),

, ,,

在直角三角形中,由勾股定理得,,

解得,

,

3)過點(diǎn)于點(diǎn),

∵∠FGN=∠EGC,

,


FN,
SCGF=CGFN××3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(,3)在反比例函數(shù)Cy=(x>0)上,點(diǎn)P是反比例函數(shù)Cy=(x>0)-動點(diǎn),連接AP,點(diǎn)Mx軸上,且滿足MPAP,垂足為P

(1)求反比例函數(shù)的解析式;

(2)若點(diǎn)P(2,n),求PM所在直線的解析式;

(3)PBx軸,B為垂足,CAy軸,BP的延長線交AC于點(diǎn)C,當(dāng)AMPAPC相似時,請寫出∠AMP與∠BMP的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】電水壺采用的是蒸汽智能感應(yīng)控溫原理,具有沸騰后自動斷電、防干燒斷電的功能.如圖1,是一電水壺的實(shí)物圖.當(dāng)壺蓋打開時,壺蓋與閉合時蓋面之間的夾角可以抽象為(如圖2),壺身側(cè)面與底座(壺蓋及底座厚度護(hù)理不計)之間的夾角可以抽象為(如圖2)若壺嘴及手柄部分不考慮,量得壺蓋和底座的直徑分別為,

1)求底座周長比壺蓋周長長多少?(結(jié)果保留

2)若量得,求壺蓋最高點(diǎn)到底座所在平面的距離.

(結(jié)果精確到,參考數(shù)據(jù):,,.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y4x與雙曲線y交于A,B兩點(diǎn),過B作直線BCy軸,垂足為C,則以OA為直徑的圓與直線BC的交點(diǎn)坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王老師在期中考試過后,決定給同學(xué)們發(fā)放獎品.他到對面文具店看了一下,準(zhǔn)備買一些鋼筆和筆記本,再給班級購買一個中考倒計時電子顯示屏,經(jīng)預(yù)算總共需要1501元,其中電子顯示屏的價格為41元.當(dāng)他付款時才發(fā)現(xiàn)他把鋼筆和筆記本的單價弄反了,由于王老師購物金額超過1000元,文具店免費(fèi)贈送了一個電子顯示屏.這樣實(shí)際付款后預(yù)算資金還剩余100多元(剩余資金為整數(shù)),正好能再購買1支鋼筆和1個筆記本,王老師計劃購買__________件獎品.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形ABCD中,動點(diǎn)P從點(diǎn)B出發(fā),沿BCCDDA運(yùn)動至點(diǎn)A停止.設(shè)點(diǎn)P運(yùn)動的路程為x,△ABP的面積為y,若y關(guān)于x的函數(shù)圖象如圖2所示,則y的最大值是(  )

A.55B.30C.16D.15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小玲和弟弟小東分別從家和圖書館同時出發(fā),沿同一條路相向而行,小玲開始跑步中途改為步行,到達(dá)圖書館恰好用30.小東騎自行車以300的速度直接回家,兩人距家的路程與各自離開出發(fā)地的時間之間的函數(shù)圖像如圖所示.

1)家與圖書館之間的路程為__________,小玲步行的速度為__________

2)求小東距家的路程關(guān)于的函數(shù)表達(dá)式;

3)求兩人出發(fā)后多長時間相遇.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為測量底面為圓形的古塔的高度,小紅和小明應(yīng)用不同方法對其展開了研究,以下是他們各自的研究方法和研究數(shù)據(jù):

小紅:如圖1,測角儀,的高度均為,分別測得古塔頂端的仰角為,,測角儀底端的距離

小明:如圖2,測角儀的高度為,測得古塔頂端的仰角為,測角儀所在位置與古塔底部邊緣的最短距離.(參考數(shù)據(jù):,,,,)小明利用測得的數(shù)據(jù)計算古塔高度

問題1:指出小明計算過程中的錯誤之處;

問題2:利用兩人的測量數(shù)據(jù),求出古塔底面圓的半徑(結(jié)果精確到).

查看答案和解析>>

同步練習(xí)冊答案