【題目】如圖,ABC,ACB=90°,CDAB,

(1)圖①中共有     對相似三角形,寫出來分別為         (不需證明);

(2)已知AB=10,AC=8,請你求出CD的長;

(3)(2)的情況下,如果以ABx,CDy,D為坐標原點O,建立直角坐標系(如圖②),若點P從點C出發(fā),以每秒1個單位的速度沿線段CB運動,Q從點B出發(fā),以每秒1個單位的速度沿線段BA運動,其中一點最先到達線段的端點時,兩點即刻同時停止運動;設運動時間為t,是否存在點P,使以點B,P,Q為頂點的三角形與ABC相似?若存在,請求出點P的坐標;若不存在,請說明理由.

【答案】13對,分別是:△ABC∽△ACD, △ABC∽△CBD , △ACD∽△CBD;(24.8;(3)存在,(1.35,3)或(3.15,1.8).

【解析】

試題(1)根據兩角對應相等的兩三角形相似即可得到3對相似三角形,分別為:△ABC∽△ACD△ABC∽△CBD,△ABC∽△CBD

2)先在△ABC中由勾股定理求出BC的長,再根據△ABC的面積不變得到ABCD=ACBC,即可求出CD的長;

3)由于∠B公共,所以以點B、PQ為頂點的三角形與△ABC相似時,分兩種情況進行討論:①△PQB∽△ACB②△QPB∽△ACB

試題解析:(1)圖1中共有3對相似三角形,分別為:△ABC∽△ACD△ABC∽△CBD,△ABC∽△CBD

故答案為3,△ABC∽△ACD,△ABC∽△CBD,△ABC∽△CBD;

2)如圖1,在△ABC中,∵∠ACB=90°AB=10,AC=8∴BC==6

∵△ABC的面積=ABCD=ACBC,∴CD==4.8;

3)存在點P,使以點BP、Q為頂點的三角形與△ABC相似,理由如下:在△BOC中,∵∠COB=90°,BC=6,OC=4.8,∴OB==3.6

分兩種情況:∠BQP=90°時,如圖2①,此時△PQB∽△ACB

,,解得t=2.25,即BQ=CP=2.25,

∴OQ=OB﹣BQ=3.6﹣2.25=1.35,BP=BC﹣CP=6﹣2.25=3.75

△BPQ中,由勾股定理,得PQ==,P的坐標為(1.35,3);

∠BPQ=90°時,如圖2②,此時△QPB∽△ACB,,,

解得t=3.75,即BQ=CP=3.75,BP=BC﹣CP=6﹣3.75=2.25

過點PPE⊥x軸于點E

∵△QPB∽△ACB,,∴PE=1.8

△BPE中,BE==,∴OE=OB﹣BE=3.6﹣0.45=3.15,

P的坐標為(3.151.8);

綜上可得,點P的坐標為(1.353)或(3.15,1.8).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,一次函數(shù)y=﹣2x+8的圖象與x軸,y軸分別交于點A,點C,過點AABx軸,垂足為點A,過點CCBy軸,垂足為點C,兩條垂線相交于點B.

(1)線段AB,BC,AC的長分別為AB=   ,BC=   ,AC=   ;

(2)折疊圖1中的ABC,使點A與點C重合,再將折疊后的圖形展開,折痕DEAB于點D,交AC于點E,連接CD,如圖2.

請從下列A、B兩題中任選一題作答,我選擇   題.

A:①求線段AD的長;

②在y軸上,是否存在點P,使得APD為等腰三角形?若存在,請直接寫出符合條件的所有點P的坐標;若不存在,請說明理由.

B:①求線段DE的長;

②在坐標平面內,是否存在點P(除點B外),使得以點A,P,C為頂點的三角形與ABC全等?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,將繞點逆時針方向旋轉得到,當點落在邊上時,的延長線恰好經過點,則的長為(

A. 1B. C. -1+D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,四邊形AOBC是矩形,點O0,0),點A5,0),點B0,3).以點A為中心,順時針旋轉矩形AOBC,得到矩形ADEF,點O,BC的對應點分別為D,E,F

1)如圖①,當點D落在BC邊上時,求點D的坐標;

2)如圖②,當點D落在線段BE上時,ADBC交于點H

①求證ADB≌△AOB

②求點H的坐標.

3)記K為矩形AOBC對角線的交點,SKDE的面積,求S的取值范圍(直接寫出結果即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級為了解學生課堂發(fā)言情況,隨機抽取該年級部分學生,對他們某天在課堂上發(fā)言的次數(shù)進行了統(tǒng)計,其結果如下表,并繪制了如圖所示的兩幅不完整的統(tǒng)計圖,已知B、E兩組發(fā)言人數(shù)的比為5:2,請結合圖中相關數(shù)據回答下列問題:

(1)則樣本容量容量是______________,并補全直方圖;

(2)該年級共有學生500人,請估計全年級在這天里發(fā)言次數(shù)不少于12的次數(shù);

(3)已知A組發(fā)言的學生中恰有1位女生,E組發(fā)言的學生中有2位男生,現(xiàn)從A組與E組中分別抽一位學生寫報告,請用列表法或畫樹狀圖的方法,求所抽的兩位學生恰好是一男一女的概率。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,2分別是某款籃球架的實物圖與示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角ACB=75°,支架AF的長為2.50米,籃板頂端F點到籃框D的距離FD=1.35米,籃板底部支架HE與支架AF所成的角FHE=60°,求籃框D到地面的距離(精確到0.01米)(參考數(shù)據:cos75°0.2588,sin75°0.9659,tan75°3.732,1.732,1.414)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解永康市某中學八年級學生的視力水平,從中抽查部分學生的視力情況,繪制了如圖統(tǒng)計圖:

1)本次調查的樣本容量是 ;

2)請補全條形統(tǒng)計圖,并求扇形統(tǒng)計圖中視力正常的圓心角度數(shù);

3)該校八年級共有200位學生,請估計該校八年級視力正常的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù)y=x≠0)的圖象經過(3,-1),則當1<y<3時,自變量x的取值范圍是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線l經過A(6,0)B(0,12)兩點,且與直線yx交于點C,點P(m,0)x軸上運動.

(1)求直線l的解析式;

(2)過點Pl的平行線交直線yx于點D,當m3時,求△PCD的面積;

(3)是否存在點P,使得△PCA成為等腰三角形?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案