【題目】如圖,直線y=x+8與x軸,y軸分別交于點A,B,直線y=x+1與直線AB交于點C,與y軸交于點D.
(1)求點C的坐標.
(2)求△BDC的面積.
(3)如圖,P是y軸正半軸上的一點,Q是直線AB上的一點,連接PQ.
①若PQ∥x軸,且點A關(guān)于直線PQ的對稱點A′恰好落在直線CD上,求PQ的長.
②若△BDC與△BPQ全等(點Q不與點C重合),請寫出所有滿足要求的點Q坐標(直接寫出答案).
【答案】(1)C(3,4);(2);(3)①;②Q(,)
【解析】
(1)聯(lián)立方程解答即可得出點C的坐標;
(2)根據(jù)三角形的面積公式解答即可;
(3)①根據(jù)PQ∥x軸得出AA'⊥x軸,進而解答即可;
②分兩種情況進行解答即可.
(1)由x+8=x+1得x=3,代入得y=3+1=4,
∴ C(3,4)
(2)∵ B(0,8), D(0,1),
∴ BD=7. C(3,4)
∴S△BDCBD×3×7×3=
(3)①∵ PQ//x軸,∴AA′⊥軸.
∵ A(6,0), ∴ AA'=6+1=7
∴ y=x+8
∴ x=,即:PQ
②按2種情形討論
若P在點B下方,則有BP=BC=5,
此時xQ==
代入y=x+8得yQ,
∴ Q( ,).
P在點B上方時,
若BP=BD,
則有xQ=-xC=-3
∴ Q(-3,12),
若BP=BC=5,
則有xQ3=-xQ1=-,
<>∴Q(,).科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)興趣小組為了解我校初三年級1800名學(xué)生的身體健康情況,從初三隨機抽取了若干名學(xué)生,將他們按體重(均為整數(shù),單位:kg)分成五組(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下兩幅尚不完整的統(tǒng)計圖.
補全條形統(tǒng)計圖,并估計我校初三年級體重介于47kg至53kg的學(xué)生大約有多少名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標系中,A(0,a),B(b,0)且a、b滿足|a+2b﹣6|+|a﹣2b+2|=0.E為線段AB上一動點,∠BED=∠OAB,BD⊥EC,垂足在EC的延長線上,試求:
(1)判斷△OAB的形狀,并說明理由;
(2)如圖1,當(dāng)點E與點A重合時,探究線段AC與BD的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)如圖2,當(dāng)點E在線段AB(不與A、B重合)上運動時,試探究線段EC與BD的數(shù)量關(guān)系,證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形是由兩個小正方形和兩個小長方形組成的,根據(jù)圖形解答下列問題:
(1)請用兩種不同的方法表示正方形的面積,并寫成一個等式;
(2)運用(1)中的等式,解決以下問題:
①已知,,求的值;
②已知,,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知中,,,過頂點作射線.
(1)當(dāng)射線在外部時,如圖①,點在射線上,連結(jié)、,已知,,().
①試證明是直角三角形;
②求線段的長.(用含的代數(shù)式表示)
(2)當(dāng)射線在內(nèi)部時,如圖②,過點作于點,連結(jié),請寫出線段、、的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一個平臺遠處有一座古塔,小明在平臺底部的點C處測得古塔頂部B的仰角為60°,在平臺上的點E處測得古塔頂部的仰角為30°.已知平臺的縱截面為矩形DCFE,DE=2米,DC=20米,求古塔AB的高(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖象(折線ABCDE)描述了一汽車在某一直路上行駛過程中汽車離出發(fā)地的距離S(千米)和行駛時間t(小時)之間的函數(shù)關(guān)系,根據(jù)圖中提供的信息,下列說法正確的是( )
A.汽車共行駛了120千米
B.汽車在行駛途中停留了2小時
C.汽車在AB段的行駛速度與CD段的行駛速度相同
D.汽車自出發(fā)后3小時至4.5小時之間行駛的平均速度為80千米/時
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線l1交x軸于點A(6,0),交y軸于B(0,6).
(1)如圖,折疊△AOB,使BA落在y軸上,折痕所在直線為l2,直線l2與x軸交與C點,求C點坐標及l2的解析式;
(2)在直線l1上找點M,使得以M、A、C為頂點的三角形是等腰三角形,求出所有滿足條件的M點的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義:有一組對角相等而另一組對角不相等的凸四邊形叫做等對角四邊形.請解決下列問題:
(1)已知:如圖1,四邊形ABCD是等對角四邊形,∠A≠∠C,∠A=70°,∠B=75°,則∠C= °,∠D= °
(2)在探究等對角四邊形性質(zhì)時:
小紅畫了一個如圖2所示的等對角四邊形ABCD,其中,∠ABC=∠ADC,AB=AD,此時她發(fā)現(xiàn)CB=CD成立,請你證明該結(jié)論;
(3)圖①、圖②均為4×4的正方形網(wǎng)格,線段AB、BC的端點均在網(wǎng)點上.按要求在圖①、圖②中以AB和BC為邊各畫一個等對角四邊形ABCD.
要求:四邊形ABCD的頂點D在格點上,所畫的兩個四邊形不全等.
(4)已知:在等對角四邊形ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4,求對角線AC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com