【題目】如圖,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD90°,點D在邊AB上,點E在邊AC的左側,連接AE

1)求證:AEBD;

2)試探究線段AD、BDCD之間的數(shù)量關系;

3)過點CCFDEAB于點F,若BDAF12,CD,求線段AB的長.

【答案】1)見解析;(2BD2+AD22CD2;(3AB2+4

【解析】

1)根據(jù)等腰直角三角形的性質證明△ACE≌△BCD即可得到結論;

2)利用全等三角形的性質及勾股定理即可證得結論;

3)連接EF,設BDx,利用(1)、(2)求出EF=3x,再利用勾股定理求出x,即可得到答案.

1)證明:∵△ACB和△ECD都是等腰直角三角形

ACBC,ECDC,∠ACB=∠ECD90°

∴∠ACB﹣∠ACD=∠ECD﹣∠ACD

∴∠ACE=∠BCD,

∴△ACE≌△BCDSAS),

AEBD

2)解:由(1)得△ACE≌△BCD,

∴∠CAE=∠CBD,

又∵△ABC是等腰直角三角形,

∴∠CAB=∠CBA=∠CAE45°,

∴∠EAD90°,

RtADE中,AE2+AD2ED2,且AEBD,

BD2+AD2ED2

EDCD,

BD2+AD22CD2

3)解:連接EF,設BDx

BDAF12,則AF2x

∵△ECD都是等腰直角三角形,CFDE

DFEF,

1)、(2)可得,在RtFAE中,

EF3x,

AE2+AD22CD2,

,

解得x1,

AB2+4

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一些完全相同的小正方形搭成一個幾何體,這個幾何體從正面和左面看所得的平面圖形均如圖所示,小正方體的塊數(shù)可能有( )

A. 7 B. 8 C. 9 D. 10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在△ABC中,∠B=50°,∠C=30°,分別以點A和點C為圓心,大于AC的長為半徑畫弧,兩弧相交于點M,N,作直線MN,交BC于點D,連接AD,

1)若△ABD的周長是19,AB=7,求BC的長;

2)求∠BAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=x+b的圖象交于點A(1,4),點B(m,-1),

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)求△OAB的面積;

(3)直接寫出不等式x+b>的解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AB=8厘米,AC=16厘米,點PA出發(fā),以每秒2厘米的速度向B運動,點QC同時出發(fā),以每秒3厘米的速度向A運動,其中一個動點到端點時,另一個動點也相應停止運動,設運動的時間為t

⑴用含t的代數(shù)式表示:AP=   AQ=   

⑵當以A,P,Q為頂點的三角形與ABC相似時,求運動時間是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明想測量學校教學樓的高度,教學樓AB的后面有一建筑物CD,他測得當光線與地面成22°的夾角時,教學樓在建筑物的墻上留下高2米高的影子CE;而當光線與地面成45°的夾角時,教學樓頂A在地面上的影子F與墻角C13米的距離(點B,F(xiàn),C在同一條直線上),則AE之間的長為_____米.(結果精確到lm,參考數(shù)據(jù):sin22°≈0.375,cos22°≈0.9375,tan22°≈0.4)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在正方形ABCD(正方形四邊相等,四個角均為直角)中,AB8,P為線段BC上一點,連接AP,過點BBQAP,交CD于點Q,將△BQC沿BQ所在的直線對折得到△BQC,延長QCAD于點N

1)求證:BPCQ;

2)若BPPC,求AN的長;

3)如圖2,延長QNBA的延長線于點M,若BPx0x8),△BMC'的面積為S,求Sx之間的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,,,,,是直線上一點,把沿所在的直線翻折后,點落在直線上的點處,的長是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,拋物線y=ax2+bx+c與坐標軸分別交于點A(0,6),B(6,0),C(﹣2,0),點P是線段AB上方拋物線上的一個動點.

(1)求拋物線的解析式;

(2)當點P運動到什么位置時,△PAB的面積有最大值?

(3)過點Px軸的垂線,交線段AB于點D,再過點PPEx軸交拋物線于點E,連結DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案