【題目】已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為M(1,0),直線與該二次函數(shù)的圖象交于A,B兩點(diǎn),其中A點(diǎn)的坐標(biāo)為(3,4),B點(diǎn)在軸上.
(1)求m的值及這個(gè)二次函數(shù)的解析式;
(2)若P(,0) 是軸上的一個(gè)動(dòng)點(diǎn),過(guò)P作軸的垂線分別與直線AB和二次函數(shù)的圖象交于D、E兩點(diǎn).
①當(dāng)0<< 3時(shí),求線段DE的最大值;
②若直線AB與拋物線的對(duì)稱軸交點(diǎn)為N,問(wèn)是否存在一點(diǎn)P,使以M、N、D、E為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出此時(shí)P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1) ; (2)①有最大值②存在.(2,0)(,0)(,0).
【解析】
(1)將A點(diǎn)坐標(biāo)分別代入拋物線的直線,便可求出拋物線的解析式和m的值;
(2)過(guò)A作AH⊥PM于H,利用△MAB的面積=S梯形BOHA-S△BOM-S△AMH計(jì)算即可;
(3)①線段DE的長(zhǎng)為h,根據(jù)P點(diǎn)坐標(biāo)分別求出DE兩點(diǎn)坐標(biāo),便可求出h與a之間的函數(shù)關(guān)系式,進(jìn)而可求出線段DE的最大值;
②存在一點(diǎn)P,使以M、N、D、E為頂點(diǎn)的四邊形是平行四邊形,要使四邊形NMED是平行四邊形,必須DE=MN=2,由①知DE=|-a2+3a|,進(jìn)而求出a的值,所以P的坐標(biāo)可求出.
(1)設(shè)拋物線的解析式為y=a(x-1)2,
∵點(diǎn)A(3,4)在拋物線上,則4=a(3-1)2,
解得a=1,
∴拋物線的解析式為y=(x-1)2
∵點(diǎn)A(3,4)也在直線y=x+m,即4=3+m,
解得m=1;
(2)過(guò)A作AH⊥PM于H,
∵B(0,1),M(1,0),A(3,4),
∴OB=1,OH=3,AH=4,
∴△MAB的面積=S梯形BOHA-S△BOM-S△AMH=7.5-×1×1-×2×4=3;
(3)①已知P點(diǎn)坐標(biāo)為P(a,0),則E點(diǎn)坐標(biāo)為E(a,a2-2a+1),D點(diǎn)坐標(biāo)為D(a,a+1),
h=DE=yD-yE=a+1-(a2-2a+1)=-a2+3a,
∴h與a之間的函數(shù)關(guān)系式為h=-a2+3a=-(a-)2+(0<a<3),
∴線段DE的最大值是;
②存在一點(diǎn)P,使以M、N、D、E為頂點(diǎn)的四邊形是平行四邊形,
理由是∵M(1,0),
∴把x=1代入y=x+1得:y=2,
即N(1,2),
∴MN=2,
要使四邊形NMED是平行四邊形,必須DE=MN=2,
由①知DE=|-a2+3a|,
∴2=|-a2+3a|,
解得:a1=2,a2=1,a3=,a4=,
∴(2,0),(1,0)(因?yàn)楹?/span>M重合,舍去)(,0),(,0)
∴P的坐標(biāo)是(2,0),(,0),(,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AE是△ABC的角平分線.AE的垂直平分線交AB于點(diǎn)O,以點(diǎn)O為圓心,OA為半徑作⊙O,交AB于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若AC=2,tanB,求⊙O的半徑r的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的邊長(zhǎng)是4厘米,∠B=60°,動(dòng)點(diǎn)P以1厘米/秒的速度自A點(diǎn)出發(fā)沿AB方向運(yùn)動(dòng),動(dòng)點(diǎn)Q以2厘米/秒的速度自B點(diǎn)出發(fā)沿BC方向運(yùn)動(dòng)至C點(diǎn)停止,同時(shí)P點(diǎn)也停止運(yùn)動(dòng)若點(diǎn)P,Q同時(shí)出發(fā)運(yùn)動(dòng)了t秒,記△BPQ的面積為S厘米2,下面圖象中能表示S與t之間的函數(shù)關(guān)系的是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,銳角三角形ABC的兩條高線BE、CD相交于點(diǎn)O,BE=CD.
(1)求證:BD=CE;
(2)判斷點(diǎn)O是否在∠BAC的平分線上,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、AC的中點(diǎn),BE=2DE,過(guò)點(diǎn)C作CF∥BE交DE的延長(zhǎng)線于F,連接CD.
(1)求證:四邊形BCFE是菱形;
(2)在不添加任何輔助線和字母的情況下,請(qǐng)直接寫出圖中與△BEC面積相等的所有三角形(不包括△BEC).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解學(xué)生對(duì)“第二十屆中國(guó)哈爾濱冰雪大世界”主題景觀的了解情況,在全體學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并把調(diào)查結(jié)果繪制成如圖的不完整的兩幅統(tǒng)計(jì)圖:
(1)本次調(diào)查共抽取了多少名學(xué)生;
(2)通過(guò)計(jì)算補(bǔ)全條形圖;
(3)若該學(xué)校共有名學(xué)生,請(qǐng)你估計(jì)該學(xué)校選擇“比較了解”項(xiàng)目的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某學(xué)生在旗桿EF與實(shí)驗(yàn)樓CD之間的A處,測(cè)得∠EAF=60°,然后向左移動(dòng)10米到B處,測(cè)得∠EBF=30°,∠CBD=45°,tan∠CAD= .
(1)求旗桿EF的高(結(jié)果保留根號(hào));
(2)求旗桿EF與實(shí)驗(yàn)樓CD之間的水平距離DF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(﹣2,﹣2),B(0,3),C(3,3),D(4,﹣2),y是關(guān)于x的二次函數(shù),拋物線y1經(jīng)過(guò)點(diǎn)A、B、C,拋物線y2經(jīng)過(guò)點(diǎn)B、C、D,拋物線y3經(jīng)過(guò)點(diǎn)A、B、D,拋物線y4經(jīng)過(guò)點(diǎn)A、C、D.下列判斷:
①四條拋物線的開(kāi)口方向均向下;
②當(dāng)x<0時(shí),至少有一條拋物線表達(dá)式中的y均隨x的增大而減;
③拋物線y1的頂點(diǎn)在拋物線y2頂點(diǎn)的上方;
④拋物線y4與y軸的交點(diǎn)在點(diǎn)B的上方.
所有正確結(jié)論的序號(hào)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=與x軸交于A,C(A在C的左側(cè)),點(diǎn)B在拋物線上,其橫坐標(biāo)為1,連接BC,BO,點(diǎn)F為OB中點(diǎn).
(1)求直線BC的函數(shù)表達(dá)式;
(2)若點(diǎn)D為拋物線第四象限上的一個(gè)動(dòng)點(diǎn),連接BD,CD,點(diǎn)E為x軸上一動(dòng)點(diǎn),當(dāng)△BCD的面積的最大時(shí),求點(diǎn)D的坐標(biāo),及|FE﹣DE|的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com