將直線y=2x-3向右平移3個(gè)單位,再向上平移1個(gè)單位,求平移后的直線的關(guān)系式.
解:在直線y=2x-3上任取兩點(diǎn)A(1,-1),B(0,-3).
由題意知:
點(diǎn)A向右平移3個(gè)單位得A′(4,-1);再向上平移1個(gè)單位得A″(4,0)
點(diǎn)B向右平移3個(gè)單位得B′(3,-3);再向上平移1個(gè)單位得B″(3,-2)
設(shè)平移后的直線的關(guān)系式為y=kx+b.
則點(diǎn)A″(4,0),B″(3,-2)在該直線上,
可解得k=2,b=-8.
所以平移后的直線的關(guān)系式為y=2x-8.
根據(jù)以上信息解答下面問題:
將二次函數(shù)y=-x2+2x+3的圖象向左平移1個(gè)單位,再向下平移2個(gè)單位,求平移后的拋物線的關(guān)系式.(平移拋物線形狀不變)
分析:方法一:從原拋物線上找兩點(diǎn),然后找到平移后的對(duì)應(yīng)兩點(diǎn),而平移不改變二次項(xiàng)的系數(shù),設(shè)出拋物線解析式,代入拋物線的解析式即可求得新拋物線的解析式;
方法二:易得新拋物線的頂點(diǎn),根據(jù)頂點(diǎn)式及平移前后二次項(xiàng)的系數(shù)不變可得新拋物線的解析式.
解答:解:方法一:
在拋物線y=-x
2+2x+3上任取兩點(diǎn)A(0,3),B(1,4).
由題意知:
點(diǎn)A向左平移1個(gè)單位得A′(-1,3);再向下平移2個(gè)單位得A″(-1,1).
點(diǎn)B向左平移1個(gè)單位得B′(0,4);再向下平移2個(gè)單位得B″(0,2).
設(shè)平移后的拋物線的關(guān)系式為y=-x
2+bx+c.
則點(diǎn)A″(-1,1),B″(0,2)在拋物線上,可得
方法二:
由題意知:拋物線y=-x
2+2x+3的頂點(diǎn)為A(1,4).
由點(diǎn)A向左平移1個(gè)單位得A′(0,4);再向下平移2個(gè)單位得A″(0,2),這是平移后的拋物線的頂點(diǎn)坐標(biāo).
故平移后的拋物線的關(guān)系式為y=-x
2+2.
點(diǎn)評(píng):本題考查用待定系數(shù)法求拋物線的解析式,關(guān)鍵是找到平移后的兩個(gè)點(diǎn)或者新拋物線的頂點(diǎn)坐標(biāo).