【題目】綜合與實踐:制作無蓋盒子
任務(wù)一:如圖1,有一塊矩形紙板,長是寬的2倍,要將其四角各剪去一個正方形,折成高為4cm,容積為的無蓋長方體盒子紙板厚度忽略不計.
請在圖1的矩形紙板中畫出示意圖,用實線表示剪切線,虛線表示折痕.
請求出這塊矩形紙板的長和寬.
任務(wù)二:圖2是一個高為4cm的無蓋的五棱柱盒子直棱柱,圖3是其底面,在五邊形ABCDE中,,,,.
試判斷圖3中AE與DE的數(shù)量關(guān)系,并加以證明.
圖2中的五棱柱盒子可按圖4所示的示意圖,將矩形紙板剪切折合而成,那么這個矩形紙板的長和寬至少各為多少cm?請直接寫出結(jié)果圖中實線表示剪切線,虛線表示折痕紙板厚度及剪切接縫處損耗忽略不計.
【答案】任務(wù)一:(1)作圖見試題解析;(2)30,15;任務(wù)二(1)AE=DE;(2),.
【解析】
試題任務(wù)一:(1)按要求畫出示意圖即可;
(2)設(shè)矩形紙板的寬為xcm,則長為2xcm,根據(jù)題意列出方程,解出即可.
任務(wù)二:(1)AD=DE,延長EA、ED分別交直線BC于點M、N,先證明△MAB≌△NDC,得到AM=DN即可;
(2)如圖4,由(1)得;AE=DE,∠EAD=∠EDA=30°,由已知得,AG=DF=4,連接AD,GF,過B,C分別作BM⊥AD于M,CN⊥AD于N,過E作EP⊥AD于P,則GF即為矩形紙板的長,MN=BC=12,AP=DP,得到∠BAM=∠CDN=60°,求出AM、DN、BM、CN的長,然后通過三角形相似即可得到結(jié)果.
試題解析:任務(wù)一:(1)如圖1所示:
(2)設(shè)矩形紙板的寬為xcm,則長為2xcm,由題意得:4(x﹣2×4)(2x﹣2×4)=616,解得:,(舍去),∴2x=2×15=30,
答:矩形紙板的長為30cm,寬為15cm;
任務(wù)二:(1)AE=DE,證明如下:延長EA,ED分別交直線BC于M,N,∵∠ABC=∠BCD=120°,∴∠ABM=∠DCN=60°,∵∠EAB=∠EDC=90°,∴∠M=∠N=30°,∴EM=EN,在△MAB與△NDC中,∵∠M=∠N,∠ABM=∠DCN,AB=DC,∴△MAB≌△NDC,∴AM=DN,∴EM﹣AM=EN﹣DN,∴AE=DE;
(2)如圖4,由(1)得;AE=DE,∠EAD=∠EDA=30°,由已知得,AG=DF=4,連接AD,GF,過B,C分別作BM⊥AD于M,CN⊥AD于N,過E作EP⊥AD于P,則GF即為矩形紙板的長,MN=BC=12,AP=DP,∴∠BAM=∠CDN=60°,∵AB=CD=6,∴AM=DN=3,BM=CN=,∴AP=AD=(3+3+12)=9,∴AE=,PE=,∵AD∥GF,∴△EAD∽△EGF,∴,∴GF=,∴矩形紙板的長至少為,矩形紙板的寬至少為PE+BM++4==.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在矩形中,動點從出發(fā),以相同的速度,沿 方向運動到點處停止.設(shè)點運動的路程為, 面積為,與的函數(shù)圖象如圖②所示.
(1)矩形的面積為 ;
(2)如圖③,若點沿邊向點以每秒1個單位的速度移動,同時,點從點出發(fā)沿邊向點以每秒2個單位的速度移動.如果、兩點在分別到達、兩點后就停止移動,回答下列問題:
①當(dāng)運動開始秒時,試判斷的形狀;
②在運動過程中,是否存在這樣的時刻,使以為圓心,的長為半徑的圓與矩形的對角線相切,若存在,求出運動時間;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一座大橋的兩端位于河的 A、B 兩點,某同學(xué)為了測量 A、B 兩點之間的河寬,在垂直于大橋 AB 的直線型道路 l 上測得了如下的數(shù)據(jù):∠BDA=76.1°,∠BCA=68.2°,CD=42.8 米。求大橋 AB 的長(精確到 1 米) 參考數(shù)據(jù):sin76.1°≈0.97,cos76.1°≈0.24,tan76.1°≈4.0,sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)線段AC,AG,AH什么關(guān)系?請說明理由;
(3)設(shè)AE=m,
①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數(shù)關(guān)系式;如果不變化,請求出定值.
②請直接寫出使△CGH是等腰三角形的m值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+b與反比例函數(shù)的圖象相交于A(1,4),B兩點,延長AO交反比例函數(shù)圖象于點C,連接OB.
(1)求k和b的值;
(2)直接寫出一次函數(shù)值小于反比例函數(shù)值的自變量x的取值范圍;
(3)在y軸上是否存在一點P,使?若存在請求出點P坐標(biāo),若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀以下短文,然后解決下列問題:
如果一個三角形和一個矩形滿足條件:三角形的一邊與矩形的一邊重合,且三角形的這邊所對的頂點在矩形這邊的對邊上,則稱這樣的矩形為三角形的“友好矩形”. 如圖①所示,矩形ABEF即為△ABC的“友好矩形”. 顯然,當(dāng)△ABC是鈍角三角形時,其“友好矩形”只有一個 .
(1) 仿照以上敘述,說明什么是一個三角形的“友好平行四邊形”;
(2) 如圖②,若△ABC為直角三角形,且∠C=90°,在圖②中畫出△ABC的所有“友好矩形”,并比較這些矩形面積的大小;
(3) 若△ABC是銳角三角形,且BC>AC>AB,在圖③中畫出△ABC的所有“友好矩形”,指出其中周長最小的矩形并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)的圖象分別與x軸、y軸交于點A、C,與反比列函數(shù)的圖象在第一象限內(nèi)交于點P,過點P作軸,垂足為B,且的面積為9.
點A的坐標(biāo)為______,點C的坐標(biāo)為______,點P的坐標(biāo)為______;
已知點Q在反比例函數(shù)的圖象上,其橫坐標(biāo)為6,在x軸上確定一點M,使得的周長最小,求出點M的坐標(biāo);
設(shè)點E是反比例函數(shù)在第一象限內(nèi)圖象上的一動點,且點E在直線PB的右側(cè),過點E作軸,垂足為F,當(dāng)和相似時,求動點E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC≌△DCE≌△GEF,三條對應(yīng)邊BC.CE、EF在同一條直線上,連接BG,分別交AC、DC、DE于點P、Q、K,其中S△PQC=3,則圖中三個陰影部分的面積和為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為改善辦學(xué)條件,計劃采購A、B兩種型號的空調(diào),已知采購3臺A型空調(diào)和2臺B型空調(diào),需費用39000元;4臺A型空調(diào)比5臺B型空調(diào)的費用多6000元.
(1)求A型空調(diào)和B型空調(diào)每臺各需多少元;
(2)若學(xué)校計劃采購A、B兩種型號空調(diào)共30臺,且A型空調(diào)的臺數(shù)不少于B型空調(diào)的一半,兩種型號空調(diào)的采購總費用不超過217000元,該校共有哪幾種采購方案?
(3)在(2)的條件下,采用哪一種采購方案可使總費用最低,最低費用是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com