【題目】圖為放置在水平桌面上的臺燈的平面示意圖,可伸縮式燈臂AO長為40cm,與水平面所形成的夾角∠OAM恒為75°(不受燈臂伸縮的影響),由光源O射出的光線沿?zé)粽中纬晒饩OC,OB與水平面所形成的夾角∠OCA,∠OBA分別為90°和30°,
(1)求該臺燈照亮桌面的寬度BC(不考慮其他因素,結(jié)果精確到1cm.溫馨提示:sin75°≈0.97,cos75°≈0.26, ≈1.73)
(2)若燈臂最長可伸長至60cm,不調(diào)整燈罩的角度,能否讓臺燈照亮桌面85cm的寬度?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+4與x軸相交于點(diǎn)A,與y軸相交于點(diǎn)B.
(1)求△AOB的面積;
(2)過B點(diǎn)作直線BC與x軸相交于點(diǎn)C,若△ABC的面積是16,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=AD,BC=BD,若∠ABD=∠BAC=,則∠BDC的度數(shù)為( )
A. 2B. 45°+C. 90°-D. 180°-3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D,E,F分別在三邊上,且BE=CD,BD=CF,G為EF的中點(diǎn).
(1)若∠A=40°,求∠B的度數(shù);
(2)試說明:DG垂直平分EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小丹、小林是某中學(xué)八年級的同班同學(xué),在升入九年級時(shí),學(xué)校打算重新組班,他們將被隨機(jī)編入A,B,C三個(gè)班.
(1)請你用畫樹狀圖法或列表法,列出所有可能的結(jié)果;
(2)求兩人再次成為同班同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,AB∥CD,∠BCF=180°,BD平分∠ABC,CE平分∠DCF,∠ACE=90°.
求證:AC⊥BD
請將下列證明過程中的空格補(bǔ)充完整.
證明:∵AB∥CD,
∴∠ABC=∠DCF.(_____)
∵BD平分∠ABC,CE平分∠DCF,
∴∠2=∠ABC,∠4=∠DCF.(_____)
∴_______.
∴BD∥CE.(_______)
∴______.(兩直線平行,內(nèi)錯(cuò)角相等)
∵∠ACE=90°,
∴∠BGC=90°,即AC⊥BD.(_____)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形 ABCD為⊙O的內(nèi)接四邊四邊形,已知∠BOD=100°,則∠BCD 的度數(shù)為( )
A.50°
B.80°
C.100°
D.130°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BCA=90°,CD 是邊 AB上的中線,分別過點(diǎn) C , D 作 BA , BC的平行線交于點(diǎn) E ,且 DE 交 AC 于點(diǎn) O ,連接 AE .
(1)求證:四邊形 ADCE 是菱形;
(2)若AC=2DE,求 sin∠CDB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是用形狀大小都相同的黑色棋子擺成的圖形,觀察規(guī)律完成下列問題:
第1個(gè)圖形 第2個(gè)圖形 第3個(gè)圖形 …
(1)填寫下表:
圖形序號(個(gè)) | 1 | 2 | 3 | 4 | … |
棋子的顆數(shù) | 4 | 7 | 10 | … |
(2)照這樣方式下去,寫出擺第n個(gè)圖形的棋子數(shù)為_____________________。
(3)你知道第153個(gè)圖形需要幾顆棋子嗎?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com