如圖,將△ABC放在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)A、B、C均落在格點(diǎn)上.

(1)△ABC的面積等于    

(2)若四邊形DEFG是△ABC中所能包含的面積最大的正方形,請(qǐng)你在如圖所示的網(wǎng)格中,用直尺和三角尺畫(huà)出該正方形,并簡(jiǎn)要說(shuō)明畫(huà)圖方法(不要求證明)    

 

【答案】

(1)6;

(2)取格點(diǎn)P,連接PC,過(guò)點(diǎn)A畫(huà)PC的平行線,與BC交于點(diǎn)Q,連接PQ與AC相交得點(diǎn)D,過(guò)點(diǎn)D畫(huà)CB的平行線,與AB相交得點(diǎn)E,分別過(guò)點(diǎn)D、E畫(huà)PC的平行線,與CB相交得點(diǎn)G,F(xiàn),則四邊形DEFG即為所求。

【解析】

試題分析:(1)△ABC以AB為底,高為3個(gè)單位,求出面積即可:。

(2)作出所求的正方形,如圖所示,畫(huà)圖方法為:取格點(diǎn)P,連接PC,過(guò)點(diǎn)A畫(huà)PC的平行線,與BC交于點(diǎn)Q,連接PQ與AC相交得點(diǎn)D,過(guò)點(diǎn)D畫(huà)CB的平行線,與AB相交得點(diǎn)E,分別過(guò)點(diǎn)D、E畫(huà)PC的平行線,與CB相交得點(diǎn)G,F(xiàn),則四邊形DEFG即為所求。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,將△ABC放在平面直角坐標(biāo)系中,使B、C在X軸正半軸上,若AB=AC.且A點(diǎn)坐精英家教網(wǎng)標(biāo)為(3,2),B點(diǎn)坐標(biāo)為(1,0).
(1)求邊AC所在直線的解析式;
(2)若坐標(biāo)平面內(nèi)存在三角形與△ABC全等且有一條公共邊,請(qǐng)寫(xiě)出這些三角形未知頂點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•天津)如圖,將△ABC放在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)A、B、C均落在格點(diǎn)上.
(Ⅰ)△ABC的面積等于
6
6
;
(Ⅱ)若四邊形DEFG是△ABC中所能包含的面積最大的正方形,請(qǐng)你在如圖所示的網(wǎng)格中,用直尺和三角尺畫(huà)出該正方形,并簡(jiǎn)要說(shuō)明畫(huà)圖方法(不要求證明)
取格點(diǎn)P,連接PC,過(guò)點(diǎn)A畫(huà)PC的平行線,與BC交于點(diǎn)Q,連接PQ與AC相交得點(diǎn)D,過(guò)點(diǎn)D畫(huà)CB的平行線,與AB相交得點(diǎn)E,分別過(guò)點(diǎn)D、E畫(huà)PC的平行線,與CB相交得點(diǎn)G,F(xiàn),則四邊形DEFG即為所求
取格點(diǎn)P,連接PC,過(guò)點(diǎn)A畫(huà)PC的平行線,與BC交于點(diǎn)Q,連接PQ與AC相交得點(diǎn)D,過(guò)點(diǎn)D畫(huà)CB的平行線,與AB相交得點(diǎn)E,分別過(guò)點(diǎn)D、E畫(huà)PC的平行線,與CB相交得點(diǎn)G,F(xiàn),則四邊形DEFG即為所求

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,將△ABC放在平面直角坐標(biāo)系中,使B、C在X軸正半軸上,若AB=AC.且A點(diǎn)坐標(biāo)為(3,2),B點(diǎn)坐標(biāo)為(1,0).
(1)求邊AC所在直線的解析式;
(2)若坐標(biāo)平面內(nèi)存在三角形與△ABC全等且有一條公共邊,請(qǐng)寫(xiě)出這些三角形未知頂點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖,將△ABC放在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)A、B、C均落在格點(diǎn)上.
(Ⅰ)△ABC的面積等于________;
(Ⅱ)若四邊形DEFG是△ABC中所能包含的面積最大的正方形,請(qǐng)你在如圖所示的網(wǎng)格中,用直尺和三角尺畫(huà)出該正方形,并簡(jiǎn)要說(shuō)明畫(huà)圖方法(不要求證明)________.

查看答案和解析>>

同步練習(xí)冊(cè)答案