正方形ABCD中,E是CD邊上一點,
(1)將△ADE繞點A按順時針方向旋轉(zhuǎn),使AD、AB重合,得到△ABF,如圖1所示.觀察可知:與DE相等的線段是 ,∠AFB=∠
(2)如圖2,正方形ABCD中,P、Q分別是BC、CD邊上的點,且∠PAQ=45°,試通過旋轉(zhuǎn)的方式說明:DQ+BP=PQ
(3)在(2)題中,連接BD分別交AP、AQ于M、N,你還能用旋轉(zhuǎn)的思想說明BM2+DN2=MN2.
解:(1)∵△ADE繞點A按順時針方向旋轉(zhuǎn),使AD、AB重合,得到△ABF,
∵DE=BF,∠AFB=∠AED.
故答案為BF,AED;
(2)將△ADQ繞點A按順時針方向旋轉(zhuǎn)90°,則AD與AB重合,得到△ABE,如圖2,
則∠D=∠ABE=90°,即點E、B、P共線,∠EAQ=∠BAD=90°,AE=AQ,BE=DQ,
∵∠PAQ=45°,
∴∠PAE=45°,
∴∠PAQ=∠PAE,
在△APE和△APQ中
∵,
∴△APE≌△APQ,
∴PE=PQ,
而PE=PB+BE=PB+DQ,
∴DQ+BP=PQ;
(3)∵四邊形ABCD為正方形,
∴∠ABD=∠ADB=45°,
如圖,將△ADN繞點A按順時針方向旋轉(zhuǎn)90°,則AD與AB重合,得到△ABK,
則∠ABK=∠ADN=45°,BK=DN,AK=AN,
與(2)一樣可證明△AMN≌△AMK得到MN=MK,
∵∠MBA+∠KBA=45°+45°=90°,
∴△BMK為直角三角形,
∴BK2+BM2=MK2,
∴BM2+DN2=MN2.
科目:初中數(shù)學(xué) 來源: 題型:
為迎接6月5日的“世界環(huán)境日”,某校團委開展“光盤行動”,倡議學(xué)生遏制浪費糧食行為.該校七年級(1)、(2)、(3)三個班共128人參加了活動.其中七(3)班48人參加,七(1)班參加的人數(shù)比七(2)班多10人,請問七(1)班和七(2)班各有多少人參加“光盤行動”?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
觀察分析下列數(shù)據(jù):0,﹣,,﹣3,2,﹣,3,…,根據(jù)數(shù)據(jù)排列的規(guī)律得到第16個數(shù)據(jù)應(yīng)是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,把△ABC繞點C按順時針方向旋轉(zhuǎn)35°,得到△A′B′C,A′B′交AC于點D.若∠A′DC=90°,則∠A= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC邊在直線a上,將△ABC繞點A順時針旋轉(zhuǎn)到位置①可得到點P1,此時AP1=;將位置①的三角形繞點P1順時針旋轉(zhuǎn)到位置②,可得到點P2,此時AP2=1+;將位置②的三角形繞點P2順時針旋轉(zhuǎn)到位置③,可得到點P3,此時AP3=2+;…,按此規(guī)律繼續(xù)旋轉(zhuǎn),直至得到點P2014為止.則AP2014= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,數(shù)軸上的A、B、C三點所表示的數(shù)分別是a、b、c,其中AB=BC,如果|a|>|b|>|c|,那么該數(shù)軸的原點O的位置應(yīng)該在( )
A. 點A的左邊 B. 點A與點B之間
C. 點B與點C之間 D. 點B與點C之間或點C的右邊
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com