精英家教網 > 初中數學 > 題目詳情

【題目】如圖,直線與雙曲線相交于點A(m,3),與x軸交于點C.

(1)求雙曲線的解析式;

(2)Px軸上,如果ACP的面積為3,求點P的坐標.

【答案】(1)(2)(-6,0)(-2,0).

【解析】分析:(1)把A點坐標代入直線解析式可求得m的值,則可求得A點坐標,再把A點坐標代入雙曲線解析式可求得k的值可求得雙曲線解析式;

2)設Pt,0),則可表示出PC的長,進一步表示出△ACP的面積,可得到關于t的方程,則可求得P點坐標.

詳解:(1)把A點坐標代入y=x+2,可得3=m+2,解得m=2,A2,3).A點也在雙曲線上,k=2×3=6∴雙曲線解析式為y=;

2)在y=x+2y=0可求得x=﹣4,C(﹣4,0).∵點Px軸上,∴可設P點坐標為(t,0),CP=|t+4|,A2,3),SACP=×3|t+4|∵△ACP的面積為3×3|t+4|=3,解得t=﹣6t=﹣2,P點坐標為(﹣60)或(﹣2,0).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在⊙O中,OA=AB,OCAB,則下列結論錯誤的是( 。

A. AB的長等于圓內接正六邊形的邊長

B. AC的長等于圓內接正十二邊形的邊長

C.

D. BAC=30°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,C為線段AB延長線上一點,D為線段BC上一點,CD2BD,E為線段AC上一點,CE2AE,若圖中所有線段的長度之和是線段AD長度的7倍,則的值為( )

A.B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某城鎮(zhèn)在對一項工程招標時,接到甲、乙兩個工程隊的投標書,每施工一天,需付甲隊工程款2萬元,付乙隊工程款1.5萬元.現有三種施工方案:()由甲隊單獨完成這項工程,恰好如期完工;()由乙隊單獨完成這項工程,比規(guī)定工期多6天;()由甲乙兩隊后,剩下的由乙隊單獨做,也正好能如期完工.小聰同學設規(guī)定工期為天,依題意列出方程:.

1)請將()中被墨水污染的部分補充出來:________

2)你認為三種施工方案中,哪種方案既能如期完工,又節(jié)省工程款?說明你的理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,中,,點從點出發(fā)沿射線移動,同時,點從點出發(fā)沿線段的延長線移動,已知點、的移動速度相同,與直線相交于點.

1)如圖1,當點在線段上時,過點的平行線交于點,連接、,求證:點的中點;

2)如圖2,過點作直線的垂線,垂足為,當點、在移動過程中,線段、、有何數量關系?請直接寫出你的結論: .

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列說法正確的是(

A. 清明時節(jié)雨紛紛是必然事件

B. 了解路邊行人邊步行邊低頭看手機的情況可以采取對在路邊行走的學生隨機發(fā)放問卷的方式進行調查

C. 射擊運動員甲、乙分別射擊10次且擊中環(huán)數的方差分別是0.51.2,則甲隊員的成績好

D. 分別寫有三個數字 -1,-2,4的三張卡片(卡片的大小形狀都相同),從中任意抽取兩張,則卡片上的兩數之積為正數的概率為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,三角形ABC三邊的長分別為ABm2n2,AC2mnBCm2+n2,其中mn都是正整數.以AB、ACBC為邊分別向外畫正方形,面積分別為S1、S2、S3,那么S1、S2、S3之間的數量關系為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖(1),ABCD,猜想∠BPD與∠B.D的關系,說明理由.(提示:三角形的內角和等于180°)

①填空或填寫理由

解:猜想∠BPD+B+D=360°

理由:過點PEFAB

∴∠B+BPE=180°______

ABCD,EFAB,

___________(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行)

∴∠EPD+______=180°

∴∠B+BPE+EPD+D=360°

∴∠B+BPD+D=360°

②依照上面的解題方法,觀察圖(2),已知ABCD,猜想圖中的∠BPD與∠B.D的關系,并說明理由.

③觀察圖(3)(4),已知ABCD,直接寫出圖中的∠BPD與∠B.D的關系,不說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,⊙O半徑為1,AB是⊙O的直徑,C是⊙O上一點,連接AC,O外的一點D 在直線AB上.

(1)若AC=,OB=BD.

①求證:CD是⊙O的切線.

②陰影部分的面積是   .(結果保留π)

(2)當點C在⊙O上運動時,若CD是⊙O的切線,探究∠CDO與∠OAC的數量關系.

查看答案和解析>>

同步練習冊答案