年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
(本題滿分12分)
如圖,在平面直角坐標(biāo)系中,拋物線與x軸的右交點(diǎn)為點(diǎn)A,與y
軸的交點(diǎn)為點(diǎn)B,過點(diǎn)B作x軸的平行線BC,交拋物線于點(diǎn)C,連結(jié)AC.現(xiàn)有兩動點(diǎn)P,Q分別從O,C兩點(diǎn)同時出發(fā),點(diǎn)P以每秒4個單位的速度沿OA向終點(diǎn)A移動,點(diǎn)Q以每秒1個單位的速度沿CB向點(diǎn)B移動,點(diǎn)P停止運(yùn)動時,點(diǎn)Q也同時停止運(yùn)動,線段OC,PQ相交于點(diǎn)D,過點(diǎn)D作DE∥OA,交CA于點(diǎn)E,射線QE交x軸于點(diǎn)F.設(shè)動點(diǎn)P,Q移動的時間為t(單位:秒)
(1)求A,B,C三點(diǎn)的坐標(biāo)和拋物線的頂點(diǎn)的坐標(biāo);
(2)當(dāng)t為何值時,四邊形PQCA為平行四邊形?
(3)請說明當(dāng)0<t<4.5時,△PQF的面積總為定值;
(4)當(dāng)0≤t≤4.5是否存在△PQF為等腰三角形?當(dāng)t為何值時,△PQF為等腰三角形?(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010年湖北省黃岡市初一上學(xué)期期末模擬數(shù)學(xué)卷 題型:解答題
(本題滿分12分)
如圖,在△ABC中,AD平分∠BAC.
(1)若AC=BC,∠B︰∠C=2︰1,試寫出圖中的所有等腰三角形,并給予證明.
(2)若ABBD=AC,求∠B︰∠C 的比值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(四川瀘州卷)數(shù)學(xué)(解析版) 題型:解答題
(2013年四川瀘州12分)如圖,在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(﹣2,0),點(diǎn)B的坐標(biāo)為(1,),已知拋物線y=ax2+bx+c(a≠0)經(jīng)過三點(diǎn)A、B、O(O為原點(diǎn)).
(1)求拋物線的解析式;
(2)在該拋物線的對稱軸上,是否存在點(diǎn)C,使△BOC的周長最?若存在,求出點(diǎn)C的坐標(biāo);若不存在,請說明理由;
(3)如果點(diǎn)P是該拋物線上x軸上方的一個動點(diǎn),那么△PAB是否有最大面積?若有,求出此時P點(diǎn)的坐標(biāo)及△PAB的最大面積;若沒有,請說明理由.(注意:本題中的結(jié)果均保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(廣東廣州卷)數(shù)學(xué)解析版 題型:解答題
(2011廣西梧州,26,12分)如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6cm,AB=8cm,BC=14cm.動點(diǎn)P、Q都從點(diǎn)C出發(fā),點(diǎn)P沿C→B方向做勻速運(yùn)動,點(diǎn)Q沿C→D→A方向做勻速運(yùn)動,當(dāng)P、Q其中一點(diǎn)到達(dá)終點(diǎn)時,另一點(diǎn)也隨之停止運(yùn)動.
(1)求CD的長;
(2)若點(diǎn)P以1cm/s速度運(yùn)動,點(diǎn)Q以cm/s的速度運(yùn)動,連接BQ、PQ,設(shè)△BQP面積為S(cm2),點(diǎn)P、Q運(yùn)動的時間為t(s),求S與t的函數(shù)關(guān)系式,并寫出t的取值范圍;
(3)若點(diǎn)P的速度仍是1cm/s,點(diǎn)Q的速度為acm/s,要使在運(yùn)動過程中出現(xiàn)PQ∥DC,請你直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010年四川省成都市溫江區(qū)初三第一學(xué)期期末數(shù)學(xué)卷 題型:解答題
(本題滿分12分)
如圖,在單位長度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過網(wǎng)格的交點(diǎn)A、B、C.
(1)請完成如下操作:
①以點(diǎn)O為原點(diǎn)、豎直和水平方向?yàn)檩S、網(wǎng)格邊長為單位長,建立平面直角坐標(biāo)系; ②根據(jù)圖形提供的信息,標(biāo)出該圓弧所在圓的圓心D,
并連結(jié)AD、CD.
(2)請在(1)的基礎(chǔ)上,完成下列填空:
①寫出點(diǎn)的坐標(biāo):C 、D ;
②⊙D的半徑= (結(jié)果保留根號);
③若扇形ADC是一個圓錐的側(cè)面展開圖,則該圓錐的底面的面積為 ;(結(jié)果保留)
(3)若E(7,0),試判斷直線EC與⊙D的位置關(guān)系,并說明你的理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com