【題目】如圖1,將一個(gè)邊長為的正方形紙片剪去兩個(gè)小長方形,得到一個(gè)“6”的圖案,如圖2所示,再將剪下的兩個(gè)小長方形拼成一個(gè)新的長方形,如圖3所示,

1)這個(gè)新長方形的長和寬分別為________,_________;(用、的代數(shù)式表示)

2)若,,求這個(gè)新長方形的周長.

3)在(2)的條件下,當(dāng)時(shí),求這個(gè)長方形的周長.

【答案】1,;(2;(3

【解析】

1)根據(jù)題目中的圖形,可以用含、的代數(shù)式表示出新長方形的長和寬;

2)由(1)先用含、的代數(shù)式表示出新長方形的周長,再將、分別代入化簡即可,

3)把代入(2)中周長關(guān)于的代數(shù)式即可解答.

解:(1)由圖可得,新長方形的長==,

新長方形的寬=

故答案為:

2)新長方形的周長是:,

當(dāng),,

新長方形的周長=

3)當(dāng)時(shí),新長方形的周長

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,延長BCE點(diǎn),使CEBC,點(diǎn)PAD邊上的動(dòng)點(diǎn),以cm/s的速度從D點(diǎn)到A點(diǎn)方向運(yùn)動(dòng),連接ACCP、DE

1)若AD=,運(yùn)動(dòng)時(shí)間為t,當(dāng)四邊形PCED為平行四邊形時(shí),求t的值;

2MCP的中點(diǎn),PFAC,垂足為FPGCD,垂足為G,連接MFMG,求證:∠GMF=2ACD.

3)在(2)的條件下,若∠B=75°,∠ACB=45°,AC=,連接GF,求MGF周長的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠BAC=90°,AB=AC,D、E是斜邊BC上兩點(diǎn),且∠DAE=45°,將ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后,得AFB,連接EF,下列結(jié)論:①△AED≌△AEF;②△ABC的面積等于四邊形AFBD的面積;③BE+DC=DE;BE2+DC2=DE2;⑤∠ADC=22.5°,其中正確的是( 。

A. ①③④ B. ③④⑤ C. ①②④ D. ①②⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個(gè)長方體紙盒的平面展開圖,已知紙盒中相對兩個(gè)面上的數(shù)互為相反數(shù).

1)填空:a   ,b   ,c   ;

2)先化簡,再求值:5a2b[2a2b32abca2b]+4abc

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(定義)若關(guān)于的一元一次方程的解滿足,則稱該方程為友好方程,例如:方程的解為,而,則方程友好方程

(運(yùn)用)(1)①,②,③三個(gè)方程中,為友好方程的是_________(填寫序號);

2)若關(guān)于的一元一次方程友好方程,求的值;

3)若關(guān)于的一元一次方程友好方程,且它的解為,的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 “賞中華詩詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國詩詞大會(huì)”,經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時(shí)默寫50首古詩詞,若每正確默寫出一首古詩詞得2分,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:

請結(jié)合圖表完成下列各題:

(1)①表中a的值為 ,中位數(shù)在第 組;

頻數(shù)分布直方圖補(bǔ)充完整;

(2)若測試成績不低于80分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?

(3)第5組10名同學(xué)中,有4名男同學(xué),現(xiàn)將這10名同學(xué)平均分成兩組進(jìn)行對抗練習(xí),且4名男同學(xué)每組分兩人,求小明與小強(qiáng)兩名男同學(xué)能分在同一組的概率.

組別

成績x分

頻數(shù)(人數(shù))

第1組

50≤x<60

6

第2組

60≤x<70

8

第3組

70≤x<80

14

第4組

80≤x<90

a

第5組

90≤x<100

10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,點(diǎn)、分別是、的中點(diǎn),平分,交于點(diǎn),于點(diǎn).

1)求證:四邊形是菱形;

2)若,,求四邊形的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸分別交于點(diǎn)A、B,與y軸交于點(diǎn)C,且OA=1,OB=3,頂點(diǎn)為D,對稱軸交x軸于點(diǎn)Q.

(1)求拋物線對應(yīng)的二次函數(shù)的表達(dá)式;

(2)點(diǎn)P是拋物線的對稱軸上一點(diǎn),以點(diǎn)P為圓心的圓經(jīng)過A、B兩點(diǎn),且與直線CD相切,求點(diǎn)P的坐標(biāo);

(3)在拋物線的對稱軸上是否存在一點(diǎn)M,使得△DCM∽△BQC?如果存在,求出點(diǎn)M的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC=90°,∠BAD=60°,AC=AD,AC平分∠BAD,M,N分別為AC,CD的中點(diǎn),BM的延長線交AD于點(diǎn)E,連接MN,BN對于下列四個(gè)結(jié)論:①MN∥AD;② BM=MN;③△BAE≌△ACB;④AD=BN,其中正確結(jié)論的序號是( )

A. ①②③④ B. ①②③ C. ①②④ D. ①②

查看答案和解析>>

同步練習(xí)冊答案