【題目】如圖,點(diǎn)C是等邊△ABD的邊AD上的一點(diǎn),且∠ACB75°,⊙O是△ABC的外接圓,連結(jié)AO并延長交BDE、交⊙OF

1)求證:∠BAF=∠CBD

2)過點(diǎn)CCGAEBD于點(diǎn)G,求證:CG⊙O的切線;

3)在(2)的條件下,當(dāng)AF2時(shí),求的值.

【答案】(1)證明見解析;(2)證明見解析;(3)2

【解析】

1)利用已知條件分別求出∠BAF15°,∠CBD15°,即可證明∠BAF=∠CBD

2)過點(diǎn)CCGAEBD于點(diǎn)G,連接CO,∠CAF=∠CAB﹣∠BAF60°﹣15°=45°,∠ACF90°,所以∠CFA45°,CACF,COAF,由CGAE,所以COCG,因此CG是⊙O的切線;

3)證明△DCG∽△ABC,然后利用相似比求的值.

解:(1)如圖,連接CF

AF為直徑,

∴∠ACF90°,

∵∠ACB75°,

∴∠BCF90°﹣75°=15°,

∴∠BAF15°,

∵△ABD為等邊三角形,

∴∠D=∠DAB=∠DBA60°,

∴∠CBD=∠ACB﹣∠D75°﹣60°=15°,

∴∠BAF=∠CBD

2)過點(diǎn)CCGAEBD于點(diǎn)G,連接CO

∵∠CAF=∠CAB﹣∠BAF60°﹣15°=45°,

ACF90°,

∴∠CFA45°,

CACF,

COAF,

CGAE,

COCG,

CG是⊙O的切線;

3)作CHABH,

AF,

ACCFAF2,

在△ACB中,

CAB60°,∠ACB75°,∠ABC45°,

∴∠ACH30°,∠HCB=∠HBC45°,

AHAC1,CH,AH,BHCH

ABAH+BH1+,

ADABCDADAC

CGAE,

∴∠DCG=∠CAF45°,

在△DCG與△ABC中,

DCG=∠ABC45°,∠D=∠CAB60°,

∴△DCG∽△ABC

,

的值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形中,是對(duì)角線的中點(diǎn),過點(diǎn)的直線分別交,的延長線于.

1)求證:;

2)若,試探究線段與線段之間的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】機(jī)動(dòng)車行駛到斑馬線要禮讓行人等交通法規(guī)實(shí)施后,某校數(shù)學(xué)課外實(shí)踐小組就對(duì)這些交通法規(guī)的了解情況在全校隨機(jī)調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為四種:A.非常了解,B.比較了解,C.基本了解,D.不太了解,實(shí)踐小組把此次調(diào)查結(jié)果整理并繪制成下面不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

請結(jié)合圖中所給信息解答下列問題:

(1)填空:本次共調(diào)查_____名學(xué)生;扇形統(tǒng)計(jì)圖中C所對(duì)應(yīng)扇形的圓心角度數(shù)是_____°;

(2)請直接補(bǔ)全條形統(tǒng)計(jì)圖;

(3)填空:扇形統(tǒng)計(jì)圖中,m的值為_____;

(4)該校共有500名學(xué)生,根據(jù)以上信息,請你估計(jì)全校學(xué)生中對(duì)這些交通法規(guī)非常了解的約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】雙曲線k為常數(shù),且)與直線交于兩點(diǎn).

1)求kb的值;

2)如圖,直線ABx軸于點(diǎn)C,交y軸于點(diǎn)D,若點(diǎn)ECD的中點(diǎn),求BOE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ACBC,∠C90°,折疊△ABC使得點(diǎn)C落在AB邊上的E處,連接DECE,下列結(jié)論:DEB是等腰直角三角形;②ABAC+CD ;④SCDESBDE.其中正確的個(gè)數(shù)是( 。

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A(﹣2,2)和點(diǎn)B(﹣3,﹣2)的位置如圖所示.

(1)作出線段AB關(guān)于y軸對(duì)稱的線段A′B′,并寫出點(diǎn)A、B的對(duì)稱點(diǎn)A′、B′的坐標(biāo);

(2)連接AA′BB′,請?jiān)趫D中畫一條線段,將圖中的四邊形AA′B′B分成兩個(gè)圖形,其中一個(gè)是軸對(duì)稱圖形,另一個(gè)是中心對(duì)稱圖形,并且線段的一個(gè)端點(diǎn)為四邊形的頂點(diǎn),另一個(gè)端點(diǎn)在四邊形一邊的格點(diǎn)上.(每個(gè)小正方形的頂點(diǎn)均為格點(diǎn)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在布袋中裝有兩個(gè)大小一樣,質(zhì)地相同的球,其中一個(gè)為紅色,一個(gè)為白色、模擬摸出一個(gè)球是白球的機(jī)會(huì),可以用下列哪種替代物進(jìn)行實(shí)驗(yàn)(  )

A. 拋擲一枚普通骰子出現(xiàn)1點(diǎn)朝上的機(jī)會(huì)

B. 拋擲一枚啤酒瓶蓋出現(xiàn)蓋面朝上的機(jī)會(huì)

C. 拋擲一枚質(zhì)地均勻的硬幣出現(xiàn)正面朝上的機(jī)會(huì)

D. 拋擲一枚普通圖釘出現(xiàn)針尖觸地的機(jī)會(huì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣2經(jīng)過點(diǎn)A(4,0),B(1,0).

(1)求出拋物線的解析式;

(2)點(diǎn)D是直線AC上方的拋物線上的一點(diǎn),求△DCA面積的最大值;

(3)P是拋物線上一動(dòng)點(diǎn),過PPMx軸,垂足為M,是否存在P點(diǎn),使得以A,P,M為頂點(diǎn)的三角形與△OAC相似?若存在,請求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文明小區(qū)50平方米和80平方米兩種戶型的住宅,50平方米住宅套數(shù)是80平方米住宅套數(shù)的2倍.物管公司月底按每平方米2元收取當(dāng)月物管費(fèi),該小區(qū)全部住宅都人住且每戶均按時(shí)全額繳納物管費(fèi).

1)該小區(qū)每月可收取物管費(fèi)90 000元,問該小區(qū)共有多少套80平方米的住宅?

2)為建設(shè)“資源節(jié)約型社會(huì)”,該小區(qū)物管公司5月初推出活動(dòng)一:“垃圾分類送禮物”,50平方米和80平方米的住戶分別有40%和20%參加了此次括動(dòng).為提離大家的積扱性,6月份準(zhǔn)備把活動(dòng)一升級(jí)為活動(dòng)二:“拉圾分類抵扣物管費(fèi)”,同時(shí)終止活動(dòng)一.經(jīng)調(diào)査與測算,參加活動(dòng)一的住戶會(huì)全部參加活動(dòng)二,參加活動(dòng)二的住戶會(huì)大幅增加,這樣,6月份參加活動(dòng)的50平方米的總戶數(shù)在5月份參加活動(dòng)的同戶型戶數(shù)的基礎(chǔ)上將增加,每戶物管費(fèi)將會(huì)減少;6月份參加活動(dòng)的80平方米的總戶數(shù)在5月份參加活動(dòng)的同戶型戶數(shù)的基礎(chǔ)上將增加,每戶物管費(fèi)將會(huì)減少.這樣,參加活動(dòng)的這部分住戶6月份總共繳納的物管費(fèi)比他們按原方式共繳納的物管費(fèi)將減少,求的值.

查看答案和解析>>

同步練習(xí)冊答案