【題目】如圖,已知拋物線yax2+4x+c經(jīng)過A2,0)、B0,﹣6)兩點(diǎn),其對稱軸與x軸交于點(diǎn)C

1)求該拋物線和直線BC的解析式;

2)設(shè)拋物線與直線BC相交于點(diǎn)D,求△ABD的面積;

3)在該拋物線的對稱軸上是否存在點(diǎn)Q,使得△QAB的周長最?若存在,求出Q點(diǎn)的坐標(biāo)及△QAB最小周長;若不存在,請說明理由.

【答案】1y=﹣x2+4x6,yx6;(2;(3)存在點(diǎn)Q的坐標(biāo)(4,﹣2)時(shí),使得QAB的周長最。

【解析】

1)將點(diǎn)A、點(diǎn)B的坐標(biāo)代入可得出拋物線的解析式,從而得出點(diǎn)C的坐標(biāo),然后利用待定系數(shù)法求出直線BC的解析式;

2)求出點(diǎn)D的坐標(biāo),然后根據(jù)SABDSACDSABC進(jìn)行計(jì)算,即可得出答案;

3AB長度固定,只需滿足QAQB最小即可,找點(diǎn)A關(guān)于對稱軸的對稱點(diǎn)A',連接A'B,則A'B與對稱軸的交點(diǎn)即是點(diǎn)Q的位置,求出直線A'B的解析式,即可解決問題.

解:(1)將A2,0)、B0,﹣6)代入拋物線解析式得:,

解得:,

故拋物線的解析式為:y=﹣x2+4x6,

其對稱軸為:x4,

故點(diǎn)C的坐標(biāo)為(4,0),

設(shè)直線BC的解析式為ykx+b,將點(diǎn)B、點(diǎn)C的坐標(biāo)代入可得:

解得:,

故直線BC的解析式為yx6;

2)聯(lián)立直線BC與拋物線的解析式得:

解得:,

故點(diǎn)D的坐標(biāo)為(5,),

SABDSACD+SABC

3)點(diǎn)A關(guān)于拋物線對稱軸的對稱點(diǎn)為A',連接A'B,則A'B與對稱軸的交點(diǎn)即是點(diǎn)Q的位置:

由題意得:A'坐標(biāo)為(6,0),B0,﹣6),

設(shè)直線A'B的解析式為:ymx+n,代入兩點(diǎn)坐標(biāo)可得:,

解得:,

即直線A'B的解析式為yx6,

當(dāng)x=4時(shí),y46=-2,

故點(diǎn)Q的坐標(biāo)為(4,﹣2).

即存在點(diǎn)Q的坐標(biāo)(4,﹣2)時(shí),使得△QAB的周長最。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+2k1x+k20有兩個(gè)不等實(shí)根x1x2,

1)求實(shí)數(shù)k的取值范圍;

2)若方程兩實(shí)根x1,x2滿足x1+x2+x1x210,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】跳繩時(shí),繩甩到最高處時(shí)的形狀是拋物線. 正在甩繩的甲、乙兩名同學(xué)拿繩的手間距AB6米,到地面的距離AOBD均為0. 9米,身高為1. 4米的小麗站在距點(diǎn)O的水平距離為1米的點(diǎn)F處,繩子甩到最高處時(shí)剛好通過她的頭頂點(diǎn)E. 以點(diǎn)O為原點(diǎn)建立如圖所示的平面直角坐標(biāo)系, 設(shè)此拋物線的解析式為.

1)求該拋物線的解析式;

2)如果身高為1. 85米的小華也想?yún)⒓犹K,問繩子能否順利從他頭頂越過?請說明理由;

3)如果一群身高在1. 4米到1. 7米之間的人站在OD之間,且離點(diǎn)O的距離為t, 繩子甩到最高處時(shí)必須超過他們的頭頂,請結(jié)合圖像,寫出t的取值范圍_______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為滿足市場需求,某超市在五月初五“端午節(jié)”來臨前夕,購進(jìn)一種品牌

粽子每盒進(jìn)價(jià)是40元,超市規(guī)定每盒售價(jià)不得少于45元根據(jù)以往銷售經(jīng)驗(yàn)發(fā)現(xiàn):當(dāng)售價(jià)定為每盒45元時(shí)每天可賣出700盒,每盒售價(jià)每提高1元,每天要少賣出20盒

1試求出每天的銷售量y與每盒售價(jià)之間的函數(shù)關(guān)系式;4分

2當(dāng)每盒售價(jià)定為多少元時(shí),每天銷售的利潤最大?最大利潤是多少?6分

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價(jià)不低于成本,且不高于80元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價(jià)x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:

售價(jià)x(元/千克)

50

60

70

銷售量y(千克)

100

80

60

(1)求yx之間的函數(shù)表達(dá)式;

(2)設(shè)商品每天的總利潤為W(元),則當(dāng)售價(jià)x定為多少元時(shí),廠商每天能獲得最大利潤?最大利潤是多少?

(3)如果超市要獲得每天不低于1350元的利潤,且符合超市自己的規(guī)定,那么該商品每千克售價(jià)的取值范圍是多少?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“我要上春晚”進(jìn)入決賽階段,最終將有甲、乙、丙、丁4名選手進(jìn)行決賽的終極較量,決賽分3期進(jìn)行,每期比賽淘汰1名選手,最終留下的歌手即為冠軍.假設(shè)每位選手被淘汰的可能性都相等.

1)甲在第1期比賽中被淘汰的概率為    

2)用樹狀圖法或表格法求甲在第2期被淘汰的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一次函數(shù)ykx+m的圖象經(jīng)過二次函數(shù)yax2+bx+c的頂點(diǎn),我們則稱這兩個(gè)函數(shù)為丘比特函數(shù)組

1)請判斷一次函數(shù)y=﹣3x+5和二次函數(shù)yx24x+5是否為丘比特函數(shù)組,并說明理由.

2)若一次函數(shù)yx+2和二次函數(shù)yax2+bx+c丘比特函數(shù)組,已知二次函數(shù)yax2+bx+c頂點(diǎn)在二次函數(shù)y2x23x4圖象上并且二次函數(shù)yax2+bx+c經(jīng)過一次函數(shù)yx+2y軸的交點(diǎn),求二次函數(shù)yax2+bx+c的解析式;

3)當(dāng)﹣3≤x≤1時(shí),二次函數(shù)yx22x4的最小值為a,若丘比特函數(shù)組中的一次函數(shù)y2x+3和二次函數(shù)yax2+bx+cb、c為參數(shù))相交于PQ兩點(diǎn)請問PQ的長度為定值嗎?若是,請求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD的邊長為3,E、F分別是AB、BC邊上的點(diǎn),且EDF=45°.將DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到DCM.

1)求證:EF=FM

2)當(dāng)AE=1時(shí),求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九(1)班數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查,整理出某種商品在第x1≤x≤90)天的售價(jià)與銷售量的相關(guān)信息如下表:

時(shí)間x(天)

1≤x50

50≤x≤90

售價(jià)(元/件)

x40

90

每天銷量(件)

2002x

已知該商品的進(jìn)價(jià)為每件30元,設(shè)銷售該商品的每天利潤為y[

1)求出yx的函數(shù)關(guān)系式;

2)問銷售該商品第幾天時(shí),當(dāng)天銷售利潤最大,最大利潤是多少?

3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請直接寫出結(jié)果.

查看答案和解析>>

同步練習(xí)冊答案