19.網(wǎng)絡(luò)時代的到來,很多家庭都接入了網(wǎng)絡(luò),電信局規(guī)定了撥號入網(wǎng)兩種收費方式,用戶可以任選其一;
①某用戶某月上網(wǎng)的時間為x小時,兩種收費方式的費用分別為yA(元)、yB(元).寫出yA、yB與x之間的函數(shù)關(guān)系式;
②在上網(wǎng)時間相同的條件下,請你幫該用戶選擇哪種方式上網(wǎng)更省錢?
月租費(元)計費方式(元/分)
A方式00.05
B方式540.02

分析 (1)0.05元/分=3元/時,0.02元/分=1.2元/時,y1=每小時收費額×小時數(shù),y2=每小時收費額×小時數(shù)+月租費;
(2)分別求出y1<y2,y1=y2,y1>y2時x的取值范圍,根據(jù)x的取值范圍選擇入網(wǎng)的方式.

解答 解:(1)y1=3x(x>0),y2=1.2x+54(x>0);
(2)由y1<y2得,3x<1.2x+54,解得x<30;
由y1=y2得,3x=1.2x+54,解得x=30;
由y1>y2得,3x>1.2x+54,解得x>30;
綜上所述:當該用戶上網(wǎng)時間少于30小時時,選擇計時制上網(wǎng)省錢;
當上網(wǎng)時間等于30小時時選擇計時制、全月制費用一樣;
當上網(wǎng)時間超過30小時時選擇全月制上網(wǎng)省錢.

點評 此題考查一次函數(shù)的應(yīng)用,求出費用相同的通話時間,因為比例系數(shù)為3與1.2可知長于該時間省錢方案.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:選擇題

9.下列各式屬于最簡二次根式的是( 。
A.$\sqrt{18}$B.-$\frac{1}{2}\sqrt{3}$C.$\frac{1}{\sqrt{2}}$D.$\sqrt{\frac{1}{5}}$

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

10.菱形ABCD中,點P為CD上一點,連接BP.
(1)如圖1,若BP⊥CD,菱形ABCD邊長為10,PD=4,連接AP,求AP的長.
(2)如圖2,連接對角線AC、BD相交于點O,點N為BP的中點,過P作PM⊥AC于M,連接ON、MN.試判斷△MON的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

7.如圖,函數(shù)y=2x和y=ax+4的圖象和交于點A(m,3),則不等式2x≥ax+4的解集為x≥1.5.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

14.已知一次函數(shù)y=(1+2m)x-1中,函數(shù)值y隨自變量x的增大而減小,那么m取值范圍是( 。
A.m<-$\frac{1}{2}$B.m≥-$\frac{1}{2}$C.m≤-$\frac{1}{2}$D.m>-$\frac{1}{2}$

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

4.如圖,在平面直角坐標系中,點A坐標為(2,1),連接OA,點P是x軸上的一動點,如果△OAP是等腰三角形,請你寫出符合條件的點P坐標P1(4,0),P2($\sqrt{5}$,0),P3(-$\sqrt{5}$,0),P4($\frac{5}{4}$,0).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

11.若點P(3,2-m)在函數(shù)y=$\frac{1}{x}$的圖象上,則點P一定在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

8.先化簡,再求值:已知$x=-\frac{1}{2}$,求代數(shù)式[(x-1)(3x+1)-(x+2)2+5]÷2x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

9.當m=-9時,關(guān)于x的方程x2-6x-m=0有兩個相等的實數(shù)根.

查看答案和解析>>

同步練習冊答案