【題目】在直角坐標系中,直線與軸交于點,按如圖方式作正方形、、,點、、在直線上,點、、在軸上,圖中陰影部分三角形的面積從左到右依次記為、、、,則的值為__________.
【答案】
【解析】
結合正方形的性質(zhì)結合直線的解析式可得出:A2B1=OC1,A3B2=C1C2,A4B3=C2C3,…,結合三角形的面積公式即可得出:S1=OC12=,S2=C1C22=2,S3=
C2C32=8,…,根據(jù)面積的變化可找出變化規(guī)律“Sn=22n-3(n為正整數(shù))”,依此規(guī)律即可得出結論.
解:令一次函數(shù)y=x+1中x=0,則y=1,
∴點A1的坐標為(0,1),OA1=1.
∵四邊形AnBnCnCn-1(n為正整數(shù))均為正方形,
∴A1B1=OC1=1,A2B2=C1C2=2,A3B3=C2C3=4,….
令一次函數(shù)y=x+1中x=1,則y=2,
即A2C1=2,
∴A2B1=A2C1-A1B1=1=A1B1,
∴tan∠A2A1B1=1.
∵AnCn-1⊥x軸,
∴tan∠An+1AnBn=1.
∴A2B1=OC1,A3B2=C1C2,A4B3=C2C3,….
∴S1=OC12=,S2=C1C22=2,S3=C2C32=8,…,
∴Sn=22n-3(n為正整數(shù)),∴==.
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2+bx+c(b,c是常數(shù))的圖象經(jīng)過點(1,﹣1).
(1)用含b的代數(shù)式表示c.
(2)求二次函數(shù)圖象的頂點縱坐標的最大值,并寫出此時二次函數(shù)的表達式.
(3)垂直于y軸的直線與(2)中所得的二次函數(shù)圖象交于(x1,y1)和(x2,y2),與一次函數(shù)y=﹣x+2的圖象交于(x3,y3),若x1<x2<x3,求x1+x2+x3的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),其部分圖象如圖所示,下列結論:①abc<0;②4ac<b2;③方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3;④3a+c>0;⑤當y≥0時,x的取值范圍是﹣1≤x≤3.其中結論正確的個數(shù)是( )
A. 1個B. 2個C. 3D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在平面直角坐標系中,四邊形ABCD是菱形,其中B點坐標是(8,2),D點坐標是(0,2),點A在x軸上,則菱形ABCD的周長是( )
A.2
B.8
C.8
D.12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下表中給出,,三種手機通話的收費方式.
收費方式 | 月通話費/元 | 包時通話時間/ | 超時費/(元/) |
不限時 |
(1)設月通話時間為小時,則方案,,的收費金額,,都是的函數(shù),請分別求出這三個函數(shù)解析式.
(2)填空:
若選擇方式最省錢,則月通話時間的取值范圍為______;
若選擇方式最省錢,則月通話時間的取值范圍為______;
若選擇方式最省錢,則月通話時間的取值范圍為______;
(3)小王、小張今年月份通話費均為元,但小王比小張通話時間長,求小王該月的通話時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2010河南23題)在平面直角坐標系中,已知拋物線經(jīng)過,,三點.
(1)求拋物線的解析式;
(2)若點M為第三象限內(nèi)拋物線上一動點,點M的橫坐標為m,的面積為S.求S關于m的函數(shù)關系式,并求出S的最大值;
(3)若點P是拋物線上的動點,點Q是直線上的動點,判斷有幾個位置能使以點P、Q、B、O為頂點的四邊形為平行四邊形,直接寫出相應的點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場要修建一個地下停車場,停車場的入口設計示意圖如圖所示,其中斜坡的傾斜角為18°,一樓到地下停車場地面的距離CD=2.8米,一樓到地平線的距離BC=1米.
(1)為保證斜坡的傾斜角為18°,應在地面上距點B多遠的A處開始斜坡的施工?(結果精確到0.1米)
(2)如果給該商場送貨的貨車高度為2.5米,那么按這樣的設計能否保證貨車順利進入地下停車場?請說明理由.(參考數(shù)據(jù):sin 18°≈0.31,cos 18°≈0.95,tan 18°≈0.32)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(12分)已知:二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點,其中A點坐標為(﹣3,0),與y軸交于點C,點D(﹣2,﹣3)在拋物線上.
(1)求拋物線的解析式;
(2)拋物線的對稱軸上有一動點P,求出PA+PD的最小值;
(3)若拋物線上有一動點P,使三角形ABP的面積為6,求P點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,AD=6,點O是對角線BD的中點,過點O的直線分別交AB,CD邊于點E,F.
(1)求證:四邊形DEBF是平行四邊形;
(2)當DE=DF時,求EF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com