【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn).
(1)求該拋物線的解析式;
(2)求該拋物線的對稱軸以及頂點(diǎn)坐標(biāo);
(3)設(shè)(1)中的拋物線上有一個動點(diǎn)P,當(dāng)點(diǎn)P在該拋物線上滑動到什么位置時,滿足SPAB=8,并求出此時P點(diǎn)的坐標(biāo).

【答案】
(1)解:∵拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn),

∴方程x2+bx+c=0的兩根為x=﹣1或x=3,

∴﹣1+3=﹣b,

﹣1×3=c,

∴b=﹣2,c=﹣3,

∴二次函數(shù)解析式是y=x2﹣2x﹣3


(2)解:∵y=﹣x2﹣2x﹣3=(x﹣1)2﹣4,

∴拋物線的對稱軸x=1,頂點(diǎn)坐標(biāo)(1,﹣4)


(3)解:設(shè)P的縱坐標(biāo)為|yP|,

∵SPAB=8,

AB|yP|=8,

∵AB=3+1=4,

∴|yP|=4,

∴yP=±4,

把yP=4代入解析式得,4=x2﹣2x﹣3,

解得,x=1±2 ,

把yP=﹣4代入解析式得,﹣4=x2﹣2x﹣3,

解得,x=1,

∴點(diǎn)P在該拋物線上滑動到(1+2 ,4)或(1﹣2 ,4)或(1,﹣4)時,滿足SPAB=8


【解析】(1)由于拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn),那么可以得到方程x2+bx+c=0的兩根為x=﹣1或x=3,然后利用根與系數(shù)即可確定b、c的值.(2)把拋物線的解析式化成頂點(diǎn)式即可;(3)根據(jù)SPAB=8,求得P的縱坐標(biāo),把縱坐標(biāo)代入拋物線的解析式即可求得P點(diǎn)的坐標(biāo).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC,∠ACB=90,DBC延長線上一點(diǎn),EBD的垂直平分線與AB的交點(diǎn),DEAC于點(diǎn)F,求證:EA=EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一個寬為2cm的刻度尺在圓形光盤上移動,當(dāng)刻度尺的一邊與光盤相切時,另一邊與光盤邊緣兩個交點(diǎn)處的讀數(shù)恰好是“2”和“10”(單位:cm),那么該光盤的直徑是cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用適當(dāng)?shù)姆椒ń夥匠蹋簒2﹣6x+9=(5﹣2x)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,把點(diǎn)P(﹣5,3)向右平移8個單位得到點(diǎn)P1 , 再將點(diǎn)P1繞原點(diǎn)旋轉(zhuǎn)90°得到點(diǎn)P2 , 則點(diǎn)P2的坐標(biāo)是( )
A.(3,﹣3)
B.(﹣3,3)
C.(3,3)或(﹣3,﹣3)
D.(3,﹣3)或(﹣3,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A﹣2,2),B﹣3﹣2

1)若點(diǎn)C與點(diǎn)A關(guān)于原點(diǎn)O對稱,則點(diǎn)C的坐標(biāo)為   ;

2)將點(diǎn)A向右平移5個單位得到點(diǎn)D,則點(diǎn)D的坐標(biāo)為   ;

3)由點(diǎn)A,B,CD組成的四邊形ABCD內(nèi)(不包括邊界)任取一個橫、縱坐標(biāo)均為整數(shù)的點(diǎn),求所取的點(diǎn)橫、縱坐標(biāo)之和恰好為零的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小磊要制作一個三角形的鋼架模型,在這個三角形中,長度為x(單位:cm)的邊與這條邊上的高之和為40cm,這個三角形的面積S(單位:cm2)隨x(單位:cm)的變化而變化.
(1)請直接寫出S與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍);
(2)當(dāng)x是多少時,這個三角形面積S最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)活動中,黑板上畫著如圖所示的圖形,活動前老師在準(zhǔn)備的四張紙片上分別寫有如下四個等式中的一個等式: ①AB=DC;②∠ABE=∠DCE;③AE=DE;④∠A=∠D
小明同學(xué)閉上眼睛從四張紙片中隨機(jī)抽取一張,再從剩下的紙片中隨機(jī)抽取另一張.請結(jié)合圖形解答下列兩個問題:

(1)當(dāng)抽得①和②時,用①,②作為條件能判定△BEC是等腰三角形嗎?說說你的理由;
(2)請你用樹狀圖或表格表示抽取兩張紙片上的等式所有可能出現(xiàn)的結(jié)果(用序號表示),并求以已經(jīng)抽取的兩張紙片上的等式為條件,使△BEC不能構(gòu)成等腰三角形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中秋節(jié)期間某水庫養(yǎng)殖場為適應(yīng)市場需求,連續(xù)用20天時間,采用每天降低水位以減少捕撈成本的辦法.對水庫中某種鮮魚進(jìn)行捕撈銷售,第x天(1≤x≤20且x為整數(shù))的捕撈與銷售的相關(guān)信息如下:

鮮魚銷售單價(元/kg)

20

單位捕撈成本(元/kg)

5﹣

捕撈量(kg)

950﹣10x

假定該養(yǎng)殖場每天捕撈和銷售的鮮魚沒有損失,且能在當(dāng)天全部售出.
(1)求第x天的收入y(元)與x(天)之間的函數(shù)關(guān)系式?(當(dāng)天收入=日銷售額﹣日捕撈成本)
(2)在第幾天y取得最大值,最大值是多少?

查看答案和解析>>

同步練習(xí)冊答案