【題目】如圖所示,小方格邊長為1個單位,

(1)請寫出△ABC各點的坐標(biāo).
(2)求出SABC
(3)若把△ABC向上平移2個單位,再向右平移2個單位△A′B′C′,在圖中畫出△A′B′C′.

【答案】
(1)解:A(﹣2,3),B(1,0),C(5,0);
(2)解:BC=5﹣1=4,

點A到BC的距離為3,

所以,SABC= ×4×3=6;


(3)解:△A′B′C′如圖所示.


【解析】(1)根據(jù)平面直角坐標(biāo)系寫出各點的坐標(biāo)即可;
(2)根據(jù)點的坐標(biāo)求出BC的長,再求出點A到BC的距離,然后利用三角形的面積公式列式計算即可得解;
(3)根據(jù)三角形平移的方向和距離確定出A、B、C平移后的對應(yīng)點A′、B′、C′的位置,然后順次連接即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若3x=a,3y=b,則32x+y的值為(
A.ab
B.a2b
C.ab2
D.3a2b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形紙片ABCD中,點E是AD的中點,且AE=1,BE的垂直平分線MN恰好過點C.則矩形的一邊AB的長度為(
A.1
B.
C.
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB=3,AD=4,動點Q從點A出發(fā),以每秒1個單位的速度,沿AB向點B移動;同時點P從點B出發(fā),仍以每秒1個單位的速度,沿BC向點C移動,連接QP,QD,PD.若兩個點同時運動的時間為x秒(0<x≤3),解答下列問題:

(1)設(shè)△QPD的面積為S,用含x的函數(shù)關(guān)系式表示S;當(dāng)x為何值時,S有最大值?并求出最小值;

(2)是否存在x的值,使得QP⊥DP?試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,直線AB∥DC,點P為平面上一點,連接AP與CP.
(1)如圖1,點P在直線AB、CD之間,當(dāng)∠BAP=60°,∠DCP=20°時,求∠APC.

(2)如圖2,點P在直線AB、CD之間,∠BAP與∠DCP的角平分線相交于點K,寫出∠AKC與∠APC之間的數(shù)量關(guān)系,并說明理由.

(3)如圖3,點P落在CD外,∠BAP與∠DCP的角平分線相交于點K,∠AKC與∠APC有何數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過坐標(biāo)原點O和x軸上另一點E,頂點M的坐標(biāo)為(2,4);矩形ABCD的頂點A與點O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3.

(1)求該拋物線所對應(yīng)的函數(shù)關(guān)系式;

(2)將矩形ABCD以每秒1個單位長度的速度從如圖所示的位置沿x軸的正方向勻速平行移動,同時一動點P也以相同的速度從點A出發(fā)向B勻速移動,設(shè)它們運動的時間為t秒(0≤t≤3),直線AB與該拋物線的交點為N(如圖2所示).

①當(dāng)t=時,判斷點P是否在直線ME上,并說明理由;

②設(shè)以P、N、C、D為頂點的多邊形面積為S,試問S是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若x2+kx+25是完全平方式,那么k的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某課題小組為了解某品牌電動自行車的銷售情況,對某專賣店第一季度該品牌A、B、C、D四種型號電動車的銷量做了統(tǒng)計,繪制成如圖所示的兩幅統(tǒng)計圖(均不完整)
(1)該店第一季度售出這種品牌的電動自行車共多少輛?
(2)把兩幅統(tǒng)計圖補充完整.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,∠A=∠ADE,∠C=∠E.

(1)若∠EDC=3∠C,求∠C的度數(shù).
(2)求證:BE∥CD.

查看答案和解析>>

同步練習(xí)冊答案