【題目】如圖,已知拋物線經過A(1,0),B(0,3)兩點,對稱軸是x=﹣1.
(1)求拋物線對應的函數關系式;
(2)動點Q從點O出發(fā),以每秒1個單位長度的速度在線段OA上運動,同時動點M從M從O點出發(fā)以每秒3個單位長度的速度在線段OB上運動,過點Q作x軸的垂線交線段AB于點N,交拋物線于點P,設運動的時間為t秒.
①當t為何值時,四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.
【答案】解:(1)根據題意,設拋物線的解析式為:,
∵點A(1,0),B(0,3)在拋物線上,
∴,解得:。
∴拋物線的解析式為:。
(2)①∵四邊形OMPQ為矩形,
∴OM=PQ,即,整理得:t2+5t﹣3=0,
解得(<0,舍去)。
∴當秒時,四邊形OMPQ為矩形。
②Rt△AOB中,OA=1,OB=3,∴tanA=3。
若△AON為等腰三角形,有三種情況:
(I)若ON=AN,如答圖1所示,
過點N作ND⊥OA于點D,
則D為OA中點,OD=OA=,
∴t=。
(II)若ON=OA,如答圖2所示,
過點N作ND⊥OA于點D,
設AD=x,則ND=ADtanA=3x,OD=OA﹣AD=1﹣x,
在Rt△NOD中,由勾股定理得:OD2+ND2=ON2,
即,解得x1=,x2=0(舍去)。
∴x=,OD=1﹣x=。
∴t=。
(III)若OA=AN,如答圖3所示,
過點N作ND⊥OA于點D,
設AD=x,則ND=ADtanA=3x,
在Rt△AND中,由勾股定理得:ND2+AD2=AN2,
即,解得x1=,x2=(舍去)。
∴x=,OD=1﹣x=1﹣。
∴t=1﹣。
綜上所述,當t為秒、秒,1﹣秒時,△AON為等腰三角形。
【解析】(1)用待定系數法求出拋物線的頂點式解析式。
(2)①當四邊形OMPQ為矩形時,滿足條件OM=PQ,據此列一元二次方程求解。
②△AON為等腰三角形時,可能存在三種情形,分類討論,逐一計算。
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,點D,E,F分別是AB,BC,CA的中點,AH是邊BC上的高.
(1)求證:四邊形ADEF是平行四邊形;
(2)求證:∠DHF=∠DEF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在直角坐標系中,過原點O及點A(8,0),C(0,6)作矩形OABC、連結OB,點D為OB的中點,點E是線段AB上的動點,連結DE,作DF⊥DE,交OA于點F,連結EF.已知點E從A點出發(fā),以每秒1個單位長度的速度在線段AB上移動,設移動時間為t秒.
(1)如圖1,當t=3時,求DF的長.
(2)如圖2,當點E在線段AB上移動的過程中,∠DEF的大小是否發(fā)生變化?如果變化,請說明理由;如果不變,請求出tan∠DEF的值.
(3)連結AD,當AD將△DEF分成的兩部分的面積之比為1:2時,求相應的t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC內接與⊙O,AB是直徑,⊙O的切線PC交BA的延長線于點P,OF∥BC交AC于AC點E,交PC于點F,連接AF.
(1)判斷AF與⊙O的位置關系并說明理由;
(2)若⊙O的半徑為4,AF=3,求AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】快遞公司為提高快遞分揀的速度,決定購買機器人來代替人工分揀.已知購買甲型機器人1臺,乙型機器人2臺,共需14萬元;購買甲型機器人2臺,乙型機器人3臺,共需24萬元.
(1)求甲、乙兩種型號的機器人每臺的價格各是多少萬元;
(2)已知甲型和乙型機器人每臺每小時分揀快遞分別是1200件和1000件,該公司計劃最多用41萬元購買8臺這兩種型號的機器人,則該公司該如何購買,才能使得每小時的分揀量最大?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】今年,重慶被“抖音”抖成了“網紅城市”,其中解放碑的游客數量明顯高于去年同期,如圖,小冉和小田決定用所學知識測量解放碑AB的高度,按照以下方式合作并記錄所得數據:小冉從大廈DG的底端D點出發(fā),沿直線步行10.2米到達E點,再沿坡度i=1:2.4的斜坡EF行走5.2米到達F點,最后沿直線步行30米到達解放碑底部B點,小田從大廈DG的底端乘直行電梯上行到離D點51.5米的頂端G點,從G點觀測到解放碑頂端A點的俯角為26°,若A,B,C,D,E,F,G在同一平面內,且B,F和C,E,D分別在同一水平線上,則解放碑AB的高度約為( )米.(精確到0.1米,參考數據:sin26°≈0.44,cos26°≈.90,tan26°≈0.49)
A. 29.0 B. 28.5 C. 27.5 D. 27.0
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C在AB的延長線上,AD平分∠CAE交⊙O于點D,且AE⊥CD,垂足為點E.
(1)求證:直線CE是⊙O的切線.
(2)若BC=3,CD=3,求弦AD的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com