【題目】有一天李小虎同學用“幾何畫板”畫圖,他先畫了兩條平行線AB,CD,然后在平行線間畫了一點E,連接BE,DE后(如圖①),他用鼠標左鍵點住點E,拖動后,分別得到如圖②,③,④等圖形,這時他突然一想,∠B,∠D與∠BED之間的度數(shù)有沒有某種聯(lián)系呢?接著小虎同學通過利用“幾何畫板”的“度量角度”和“計算”功能,找到了這三個角之間的關(guān)系.
(1)你能探究出圖①到圖④各圖中的∠B,∠D與∠BED之間的關(guān)系嗎?
(2)請從所得的四個關(guān)系中,選一個說明它成立的理由.
【答案】(1)(1)圖①:∠BED=∠B+∠D;圖②:∠B+∠BED+∠D=360°;圖③:∠BED=∠D-∠B;圖④:∠BED=∠B-∠D;(2)證明見解析.
【解析】(1)根據(jù)兩直線平行,內(nèi)錯角相等,即可解答;
(2)選擇③,過點E作EF∥AB,根據(jù)兩直線平行,內(nèi)錯角相等可得∠D=∠DEF,∠B=∠BEF,再根據(jù)∠BED=∠DEF-∠BEF即可證明.
解:(1)圖①:∠BED=∠B+∠D;
圖②:∠B+∠BED+∠D=360°;
圖③:∠BED=∠D-∠B;
圖④:∠BED=∠B-∠D.
(2)以圖③為例:如圖,過點E作EF∥AB,
∵AB∥CD,
∴EF∥CD,
∴∠D=∠DEF,∠B=∠BEF.
∵∠BED=∠DEF-∠BEF,
∴∠BED=∠D-∠B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩直線AB,CD相交于點O,OE平分∠BOD,∠AOC∶∠AOD=7∶11.
(1)求∠COE的度數(shù);
(2)若OF⊥OE,求∠COF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解“課程選修”的情況,對報名參加“藝術(shù)鑒賞”、“科技制作”、“數(shù)學思維”、“閱讀寫作”這四個選修項目的學生(每人限報一項)進行抽樣調(diào)查,下面是根據(jù)收集的數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計圖.
根據(jù)圖中提供的信息,解答下列問題:
(1)此次共調(diào)查了 名學生,扇形統(tǒng)計圖中,“藝術(shù)鑒賞”所對應(yīng)的圓心角的度數(shù)是 度;
(2)請把這個條形統(tǒng)計圖補充完整;
(3)現(xiàn)該校700名學生報名參加這四個選修項目,請你估計有多少名學生參加了“數(shù)學思維”項目.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點O是邊上一個動點,過點O作直線MN∥BC,設(shè)MN交∠BCA的平分線于點E,交△BCA的外角平分線于點F.
(1)探究OE與OF的數(shù)量關(guān)系并加以證明;
(2)當點O在邊AC運動時,四邊形BCFE會是菱形嗎?若是,請加以證明;若不是,則說明理由.
(3)當點O在AC運動到什么位置,四邊形AECF是矩形,請說明理由;
(4)在(3)問的基礎(chǔ)上,△ABC滿足什么條件時,四邊形AECF是正方形?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com