【題目】已知拋物線y=x2+bx+c與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,O是坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)是(﹣1,0),點(diǎn)C的坐標(biāo)是(0,﹣3).
(1)求拋物線的函數(shù)表達(dá)式;
(2)求直線BC的函數(shù)表達(dá)式和∠ABC的度數(shù);
(3)P為線段BC上一點(diǎn),連接AC,AP,若∠ACB=∠PAB,求點(diǎn)P的坐標(biāo).
【答案】(1)y=x2﹣2x﹣3;(2)45°;(3)P(,﹣).
【解析】試題分析:(1)直接將A,C點(diǎn)坐標(biāo)代入拋物線解析式求出即可;
(2)首先求出B點(diǎn)坐標(biāo),進(jìn)而利用待定系數(shù)法求出直線BC的解析式,進(jìn)而利用CO,BO的長求出∠ABC的度數(shù);
(3)利用∠ACB=∠PAB,結(jié)合相似三角形的判定與性質(zhì)得出BP的長,進(jìn)而得出P點(diǎn)坐標(biāo).
解:(1)將點(diǎn)A的坐標(biāo)(﹣1,0),點(diǎn)C的坐標(biāo)(0,﹣3)代入拋物線解析式得:
,
解得:,
故拋物線解析式為:y=x2﹣2x﹣3;
(2)由(1)得:0=x2﹣2x﹣3,
解得:x1=﹣1,x2=3,故B點(diǎn)坐標(biāo)為:(3,0),
設(shè)直線BC的解析式為:y=kx+d,
則,
解得:,
故直線BC的解析式為:y=x﹣3,
∵B(3,0),C(0,﹣3),
∴BO=OC=3,
∴∠ABC=45°;
(3)過點(diǎn)P作PD⊥x軸于點(diǎn)D,
∵∠ACB=∠PAB,∠ABC=∠PBA,
∴△ABP∽△CBA,
∴=,
∵BO=OC=3,
∴BC=3,
∵A(﹣1,0),B(3,0),
∴AB=4,
∴=,
解得:BP=,
由題意可得:PD∥OC,
∴DB=DP=,
∴OD=3﹣=,
則P(,﹣).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若實(shí)數(shù)3是不等式2x﹣a﹣2<0的一個(gè)解,則a可取的最小正整數(shù)為( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c與y軸交于點(diǎn)C,與軸交于點(diǎn)A、B,且AB=2,拋物線的對稱軸為直線x=2;
(1) 求拋物線的函數(shù)表達(dá)式;
(2) 如果拋物線的對稱軸上存在一點(diǎn)P,使得△APC周長的最小,求此時(shí)△APC周長.
(3) 設(shè)D為拋物線上一點(diǎn),E為對稱軸上一點(diǎn),若以點(diǎn)A、B、D、E為頂點(diǎn)的四邊形是菱形,求點(diǎn)D的坐標(biāo).(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著數(shù)系不斷擴(kuò)大,我們引進(jìn)新數(shù)i,新數(shù)i滿足交換律,結(jié)合律,并規(guī)定:i2=-1,那么(2+i)(2-i)=(結(jié)果用數(shù)字表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一架2.5米長的梯子AB斜靠在豎直的墻AC上,這時(shí)梯子底部B到墻底端的距離為0.7米,考慮爬梯子的穩(wěn)定性,現(xiàn)要將梯子頂部A沿墻下移0.4米到A1處,問梯子底部B將外移多少米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com