【題目】如圖,已知矩形ABCD滿足AB:BC=1: ,把矩形ABCD對(duì)折,使CDAB重合,得折痕EF,把矩形ABFE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,得到矩形A′BF′E′,連結(jié)E′B,交A′F′于點(diǎn)M,連結(jié)AC,交EF于點(diǎn)N,連結(jié)AM,MN,若矩形ABCD面積為8,則AMN的面積為(

A. 4 B. 4 C. 2 D. 1

【答案】C

【解析】

先根據(jù)已知條件判定E'A'B∽△ABC,得出∠A'BE'=ACB,進(jìn)而判定ACBE',連接BN,則AMN的面積=ABN的面積,根據(jù)NAC的中點(diǎn),故ABN的面積為ABC面積的一半,進(jìn)而得到AMN的面積為ABC面積的一半,即矩形ABCD面積的四分之一,據(jù)此可得結(jié)論.

如圖:

由折疊可得,BE=BC=AF,而AB:BC=1:,

,

由旋轉(zhuǎn)可得,AF=A'E',AB=A'B,

,

又∵

,

又∵∠E'A'B=ABC=90°,

∴△E'A'B∽△ABC,

∴∠A'BE'=ACB,

ACBE',

連接BN,則△AMN的面積=ABN的面積,

由題可得,NAC的中點(diǎn),故△ABN的面積為△ABC面積的一半,

∴△AMN的面積為△ABC面積的一半,即矩形ABCD面積的四分之一,

∴△AMN的面積=×8=2,

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有四張卡片(背面完全相同),分別寫(xiě)有數(shù)字1、2、﹣1﹣2,把它們背面朝上洗勻后,甲同學(xué)抽取一張記下這個(gè)數(shù)字后放回洗勻,乙同學(xué)再?gòu)闹谐槌鲆粡垼浵逻@個(gè)數(shù)字,用字母b、c分別表示甲、乙兩同學(xué)抽出的數(shù)字.

1)用列表法求關(guān)于x的方程x2+bx+c=0有實(shí)數(shù)解的概率;

2)求(1)中方程有兩個(gè)相等實(shí)數(shù)解的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于某一點(diǎn)成中心對(duì)稱的兩個(gè)圖形,下列說(shuō)法中,正確的個(gè)數(shù)有( )

①這兩個(gè)圖形完全重合;②對(duì)稱點(diǎn)的連線互相平行③對(duì)稱點(diǎn)所連的線段相等;④對(duì)稱點(diǎn)的連線相交于一點(diǎn);⑤對(duì)稱點(diǎn)所連的線段被同一點(diǎn)平分⑥對(duì)應(yīng)線段互相平行或在同一直線上,且一定相等.

A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,若△ABC和△ADE為等邊三角形,M,N分別為EB,CD的中點(diǎn),易證:CD=BE,△AMN是等邊三角形:

(1)當(dāng)把△ADE繞點(diǎn)A旋轉(zhuǎn)到圖2的位置時(shí),CD=BE嗎?若相等請(qǐng)證明,若不等于請(qǐng)說(shuō)明理由;

(2)當(dāng)把△ADE繞點(diǎn)A旋轉(zhuǎn)到圖3的位置時(shí),△AMN還是等邊三角形嗎?若是請(qǐng)證明,若不是,請(qǐng)說(shuō)明理由(可用第一問(wèn)結(jié)論).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,為坐標(biāo)原點(diǎn),矩形的頂點(diǎn),將矩形繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)一定的角度得到矩形,此時(shí)邊、直線分別與直線交于點(diǎn)、

1)連接,在旋轉(zhuǎn)過(guò)程中,當(dāng)時(shí),求點(diǎn)坐標(biāo).

2)連接,當(dāng)時(shí),若為線段中點(diǎn),求的面積.

3)如圖2,連接,以為斜邊向上作等腰直角,請(qǐng)直接寫(xiě)出在旋轉(zhuǎn)過(guò)程中的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)矩形ABCD的較短邊長(zhǎng)為2.

(1)如圖①,若沿長(zhǎng)邊對(duì)折后得到的矩形與原矩形相似,求它的另一邊長(zhǎng);

(2)如圖②,已知矩形ABCD的另一邊長(zhǎng)為4,剪去一個(gè)矩形ABEF后,余下的矩形EFDC與原矩形相似,求余下矩形EFDC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】12分)如圖,在直角坐標(biāo)系中,Rt△OAB的直角頂點(diǎn)Ax軸上,OA=4AB=3.動(dòng)點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度,沿AO向終點(diǎn)O移動(dòng);同時(shí)點(diǎn)N從點(diǎn)O出發(fā),以每秒125個(gè)單位長(zhǎng)度的速度,沿OB向終點(diǎn)B移動(dòng).當(dāng)兩個(gè)動(dòng)點(diǎn)運(yùn)動(dòng)了x秒(0x4)時(shí),解答下列問(wèn)題:

1)求點(diǎn)N的坐標(biāo)(用含x的代數(shù)式表示);

2)設(shè)△OMN的面積是S,求Sx之間的函數(shù)表達(dá)式;當(dāng)x為何值時(shí),S有最大值?最大值是多少?

3)在兩個(gè)動(dòng)點(diǎn)運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻,使△OMN是直角三角形?若存在,求出x的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】

如圖,大海中有A和B兩個(gè)島嶼,為測(cè)量它們之間的距離,在海岸線PQ上點(diǎn)E處測(cè)得AEP=74°,BEQ=30°;在點(diǎn)F處測(cè)得AFP=60°,BFQ=60°,EF=1km

(1)判斷AB、AE的數(shù)量關(guān)系,并說(shuō)明理由;

(2)求兩個(gè)島嶼A和B之間的距離(結(jié)果精確到0.1km).

(參考數(shù)據(jù):1.73,sin74°≈,cos74°≈0.28,tan74°≈3.49,sin76°≈0.97,cos76°≈0.24)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)口袋中裝有4個(gè)完成相同的小球,把它們分別標(biāo)號(hào)1、2、3、4,小明從中隨機(jī)地摸出一個(gè)球.

(1)直接寫(xiě)出小明摸出的球標(biāo)號(hào)為4的概率;

(2)若小明摸到的球不放回,記小明摸出球的標(biāo)號(hào)為x,然后由小強(qiáng)再隨機(jī)摸出一個(gè)球記為y.小明和小強(qiáng)在此基礎(chǔ)上共同協(xié)商一個(gè)游戲規(guī)則:當(dāng)x>y時(shí),小明獲勝,否則小強(qiáng)獲勝.請(qǐng)問(wèn)他們制定的游戲規(guī)則公平嗎?請(qǐng)用樹(shù)狀圖或列表法說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案