【題目】如圖,正方形ABCD的對角線交于點O,點O又是正方形A1B1C1O的一個頂點,而且這兩個正方形的邊長相等.無論正方形A1B1C1O繞點O怎樣轉(zhuǎn)動,兩個正方形重疊部分的面積,總等于一個正方形面積的( )
A. B. C. D.
【答案】C
【解析】
∵四邊形ABCD是正方形,
∴OC=OB,∠OCB=∠OBA=45°,∠BOC=90°.
∵四邊形A1B1C1O是正方形,
∴∠A1OC1=90°.
∵∠BOC=∠A1OC1=90°,∠BOC1=∠BOC1,
∴∠A1OB=∠C1OC.
∵∠OCB=∠OBA,OC=OB,∠A1OB=∠C1OC,
∴△EOB≌△FOC,
∴S△EOB=S△FOC,
∴S四邊形OEBF= S△EOB+S△OBF=S△FOC+S△OBF= S△OBC.
根據(jù)正方形的性質(zhì)可得S△OBC=S正方形ABCD,
∴S四邊形OMBN=S正方形ABCD,
即重疊部分的面積總是等于一個正方形面積的.
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如∠MON=30°、OP=6,點A、B分別在OM、ON上;(1)請在圖中畫出周長最小的△PAB(保留畫圖痕跡);(2)請求出(1)中△PAB的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,∠1=∠ACB,∠2=∠3,FH⊥AB于H,求證:CD⊥AB.
證明:∵∠1=∠ACB(已知)
∴DE∥BC( )
∴∠2= ( )
∵∠2=∠3(已知)
∴∠3=
∴CD∥FH( )
∴∠BDC=∠BHF( )
又∵FH⊥AB(已知)
∴ ( )
∵CD∥FH
∴∠BHF=∠BDC=90°( )
即CD⊥AB( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠現(xiàn)在平均每天比原計劃多生產(chǎn)50臺機器,現(xiàn)在生產(chǎn)600臺機器所需要的時間與原計劃生產(chǎn)450臺機器所需要的時間相同.
(1)原計劃平均每天生產(chǎn)多少臺機器?
(2)若該工廠要在不超過5天的時間,生產(chǎn)1100臺機器,則平均每天至少還要再多生產(chǎn)多少臺機器?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點A在第一象限,點B,C的坐標(biāo)為(2,1),(6,1),∠BAC=90°,AB=AC,直線AB交x軸于點P.若△ABC與△A'B'C'關(guān)于點P成中心對稱,則點A'的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,點E是邊BC的中點,∠AEF=90°,且EF交正方形外角平分線CF于點F.請你認真閱讀下面關(guān)于這個圖的探究片段,完成所提出的問題.
(1)探究1:小強看到圖(*)后,很快發(fā)現(xiàn)AE=EF,這需要證明AE和EF所在的兩個三角形全等,但△ABE和△ECF顯然不全等(一個是直角三角形,一個是鈍角三角形),考慮到點E是邊BC的中點,因此可以選取AB的中點M,連接EM后嘗試著去證△AEM≌EFC就行了,隨即小強寫出了如下的證明過程:
證明:如圖1,取AB的中點M,連接EM.
∵∠AEF=90°
∴∠FEC+∠AEB=90°
又∵∠EAM+∠AEB=90°
∴∠EAM=∠FEC
∵點E,M分別為正方形的邊BC和AB的中點
∴AM=EC
又可知△BME是等腰直角三角形
∴∠AME=135°
又∵CF是正方形外角的平分線
∴∠ECF=135°
∴△AEM≌△EFC(ASA)
∴AE=EF
(2)探究2:小強繼續(xù)探索,如圖2,若把條件“點E是邊BC的中點”改為“點E是邊BC上的任意一點”,其余條件不變,發(fā)現(xiàn)AE=EF仍然成立,請你證明這一結(jié)論.
(3)探究3:小強進一步還想試試,如圖3,若把條件“點E是邊BC的中點”改為“點E是邊BC延長線上的一點”,其余條件仍不變,那么結(jié)論AE=EF是否成立呢?若成立請你完成證明過程給小強看,若不成立請你說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中∠A=30°,E是AC邊上的點,先將△ABE沿著BE翻折,翻折后△ABE的AB邊交AC于點D,又將△BCD沿著BD翻折,C點恰好落在BE上,此時∠CDB=80°,則原三角形的∠B為 _____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結(jié)AP并延長交BC于點D,則下列說法中正確的個數(shù)是( )
①AD是∠BAC的平分線;
②∠ADC=60°;
③點D在AB的中垂線上;
④BD=2CD.
A.4 B.3 C.2 D.1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com