【題目】王老師購買了一套經(jīng)濟(jì)適用房,他準(zhǔn)備將地面鋪上地磚,地面結(jié)構(gòu)如圖所示,根據(jù)圖中的數(shù)據(jù)(單位:m),解答下列問題:

①寫出用含x、y的整式表示的地面總面積;

②若x=4m,y=1.5m,鋪1m2地磚的平均費(fèi)用為80元,求鋪地磚的總費(fèi)用為多少元?

【答案】6x+2y+18;(23600元.

【解析】

①根據(jù)圖形可知,房子的總面積包括臥室、衛(wèi)生間、廚房及客廳的面積,因?yàn)樗牟糠譃榫匦,分別找出各矩形的長和寬,根據(jù)矩形的面積公式即可表示出yx的關(guān)系;

②把xy的值代入第一問中求得的總面積中,算出房子的總面積,然后根據(jù)地磚的單價(jià)即可求出鋪地磚的總費(fèi)用.

解:①設(shè)地面的總面積為S,由題意可知:

S=3×2+2+2y+3×2+6x=6x+2y+18;

②把x=4y=1.5代入①求得的代數(shù)式得:S=24+3+18=45m2),

所以鋪地磚的總費(fèi)用為45×80=3600(元).

答:用含xy的整式表示的地面總面積為S=6x+2y+18,鋪地磚的總費(fèi)用為3600元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)Ax軸上,△AOC是邊長為2的等邊三角形.

(1)寫出△AOC的頂點(diǎn)C的坐標(biāo):_____

(2)將△AOC沿x軸向右平移得到△OBD,則平移的距離是_____

(3)將△AOC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)得到△OBD,則旋轉(zhuǎn)角可以是_____

(4)連接AD,交OC于點(diǎn)E,求∠AEO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】永州市是一個(gè)降水豐富的地區(qū),今年4月初,某地連續(xù)降雨導(dǎo)致該地某水庫水位持續(xù)上漲,下表是該水庫4月1日~4月4日的水位變化情況:

日期x

1

2

3

4

水位y(米)

20.00

20.50

21.00

21.50


(1)請(qǐng)建立該水庫水位y與日期x之間的函數(shù)模型;
(2)請(qǐng)用求出的函數(shù)表達(dá)式預(yù)測該水庫今年4月6日的水位;
(3)你能用求出的函數(shù)表達(dá)式預(yù)測該水庫今年12月1日的水位嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《算法統(tǒng)宗》是中國古代數(shù)學(xué)名著,作者是我國明代數(shù)學(xué)家程大位.在《算法統(tǒng)宗》中記載:以繩測井,若將繩三折測之,繩多4尺,若將繩四折測之,繩多1尺,繩長井深各幾何?

譯文:用繩子測水井深度,如果將繩子折成三等份,井外余繩4尺;如果將繩子折成四等份,井外余繩1尺.問繩長、井深各是多少尺?

設(shè)井深為x尺,根據(jù)題意列方程,正確的是( 。

A. 3(x+4)=4(x+1) B. 3x+4=4x+1

C. 3(x﹣4)=4(x﹣1) D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC在平面直角坐標(biāo)系中的位置如圖所示,每個(gè)小正方形的邊長為1,點(diǎn)AB、C都在格點(diǎn)上,直線MN經(jīng)過點(diǎn)(1,0)且垂直于軸,若和△ABC關(guān)于直線MN成軸對(duì)稱.(1)請(qǐng)?jiān)诰W(wǎng)格中畫出;(2)請(qǐng)直接寫出的坐標(biāo);(3)若直線上有一點(diǎn)P,要使△ACP的周長最小,請(qǐng)?jiān)趫D中畫出點(diǎn)P的位置(保留畫圖痕跡).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AOB=60°,AOB的邊OA上有一動(dòng)點(diǎn)P,從距離O點(diǎn)18cm的點(diǎn)M處出發(fā),沿線段MO、射線OB運(yùn)動(dòng),速度為2cm/s;動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),沿射線OB運(yùn)動(dòng),速度為lcm/s;PQ同時(shí)出發(fā),同時(shí)射線OC繞著點(diǎn)OOA上以每秒的速度順時(shí)針旋轉(zhuǎn),設(shè)運(yùn)動(dòng)時(shí)間是ts).

1)當(dāng)點(diǎn)PMO上運(yùn)動(dòng)時(shí),PO=______cm(用含t的代數(shù)式表示);

2)當(dāng)點(diǎn)P在線段MO上運(yùn)動(dòng)時(shí),t為何值時(shí),OP=OQ?此時(shí)射線OCAOB的角平分線嗎?如果是請(qǐng)說明理由.

3)在射線OB上是否存在P、Q相距2cm?若存在,請(qǐng)求出t的值并求出此時(shí)BOC的度數(shù);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為給研究制定《中考改革實(shí)施方案》提出合理化建議,教研人員對(duì)九年級(jí)學(xué)生進(jìn)行了隨機(jī)抽樣調(diào)查,要求被抽查的學(xué)生從物理、化學(xué)、政治、歷史、生物和地理這六個(gè)選考科目中,挑選出一科作為自己的首選科目,將調(diào)查數(shù)據(jù)匯總整理后,繪制出了如圖的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中信息解答下列問題:

(1)被抽查的學(xué)生共有多少人?
(2)將折線統(tǒng)計(jì)圖補(bǔ)充完整;
(3)我市現(xiàn)有九年級(jí)學(xué)生約40000人,請(qǐng)你估計(jì)首選科目是物理的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠A=90°,AD∥BC,E為AB的中點(diǎn),連接CE,BD,過點(diǎn)E作FE⊥CE于點(diǎn)E,交AD于點(diǎn)F,連接CF,已知2AD=AB=BC.

(1)求證:CE=BD;
(2)若AB=4,求AF的長度;
(3)求sin∠EFC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖△ABC內(nèi)有一點(diǎn)D,且DA=DB=DC.若∠DAB=20°,∠DAC=30°,則∠BDC的度數(shù)為( )

A. 100° B. 80° C. 70° D. 50°

查看答案和解析>>

同步練習(xí)冊(cè)答案