如圖,已知△ABC是等腰直角三角形,CD是斜邊AB的中線,△ADC繞點(diǎn)D旋轉(zhuǎn)一定角度得到△A'DC',A'D交AC于點(diǎn)E,DC'交BC于點(diǎn)F,連接EF,若,則=   
【答案】分析:根據(jù)等腰直角三角形的性質(zhì)及旋轉(zhuǎn)的性質(zhì),運(yùn)用“ASA”證明△ADE≌△CDF,得DE=DF.則有DE:DA′=DF:DC′,得EF∥A′C′.根據(jù)相似三角形性質(zhì)求解.
解答:解:∵△ABC是等腰直角三角形,CD是斜邊AB的中線,
∴CD⊥AB,CD=AD,∠A=∠BCD=45°.
又∵∠ADE=90°-∠CDE=∠CDF,
∴△ADE≌△CDF (ASA)
∴DE=DF.
∵DA=DA′,DC=DC′,
∴DE:DA′=DF:DC′,
∴EF∥A′C′.
∴△DEF∽△DA′C′,

,則 ,

故答案為
點(diǎn)評(píng):此題考查等腰三角形性質(zhì)、旋轉(zhuǎn)的性質(zhì)、全等三角形的判定與性質(zhì)及平行線的判定和性質(zhì)等知識(shí)點(diǎn),綜合性較強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC是邊長(zhǎng)為4的正三角形,AB在x軸上,點(diǎn)C在第一象限,AC與y軸交于點(diǎn)D,點(diǎn)A精英家教網(wǎng)的坐標(biāo)為(-1,0).
(1)寫(xiě)出B,C,D三點(diǎn)的坐標(biāo);
(2)若拋物線y=ax2+bx+c經(jīng)過(guò)B,C,D三點(diǎn),求此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知△ABC是等邊三角形,AB交⊙O于點(diǎn)D,DE⊥AC于點(diǎn)E.
(1)求證:DE為⊙O的切線.
(2)已知DE=3,求:弧BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知△ABC是等邊三角形,E是AC延長(zhǎng)線上一點(diǎn),選擇一點(diǎn)D,使得△CDE是等邊三角形,如果M是線段AD的中點(diǎn),N是線段BE的中點(diǎn),
求證:△CMN是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•襄城區(qū)模擬)如圖,已知△ABC是等邊三角形,D、E分別在邊BC、AC上,且CD=CE,連接DE并延長(zhǎng)至點(diǎn)F,使EF=AE,連接AF、BE和CF.
(1)求證:△BCE≌△FDC;
(2)判斷四邊形ABDF是怎樣的四邊形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•奉賢區(qū)二模)如圖,已知△ABC是等邊三角形,點(diǎn)D是BC延長(zhǎng)線上的一個(gè)動(dòng)點(diǎn),以AD為邊作等邊△ADE,過(guò)點(diǎn)E作BC的平行線,分別交AB,AC的延長(zhǎng)線于點(diǎn)F,G,聯(lián)結(jié)BE.
(1)求證:△AEB≌△ADC;
(2)如果BC=CD,判斷四邊形BCGE的形狀,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案