(2012•張家口一模)已知:如圖1,⊙O與射線MN相切于點(diǎn)M,⊙O的半徑為2,AC是⊙O的直徑,A與M重合,△ABC是⊙O的內(nèi)接三角形,且∠C=30°,
計(jì)算:弦AB=
2
2
,
的長(zhǎng)度
(結(jié)果保留π)
探究一:如圖2,若⊙O和△ABC沿射線MN方向作無(wú)滑動(dòng)的滾動(dòng),
(1)直接寫出:點(diǎn)B第一次在射線MN上時(shí),圓心O所走過(guò)的路線的長(zhǎng)
點(diǎn)B第二次在射線MN上時(shí),圓心O所走過(guò)的路線的長(zhǎng)
(結(jié)果保留π)
(2)過(guò)點(diǎn)A、C分別作AD⊥MN于D,CE⊥MN于E,連接OD、OE,小明通過(guò)作圖猜想:OD與OE相等,你認(rèn)為小明的猜想正確嗎?請(qǐng)說(shuō)明你的理由
探究二:
如圖3,將半徑為R、圓心角為50°的扇形紙片AOB,在射線MN的方向作無(wú)滑動(dòng)的滾動(dòng)至扇形A′O′B′處,則頂點(diǎn)O經(jīng)過(guò)的路線總長(zhǎng)為
(用含R的代數(shù)式表示,結(jié)果保留π).