【題目】如圖,在矩形ABCD中,AB=3cm,BC=6cm.點P從點D出發(fā)向點A運動,運動到點A即停止;同時,點Q從點B出發(fā)向點C運動,運動到點C即停止,點P、Q的速度都是1cm/s.連接PQ、AQ、CP.設(shè)點P、Q運動的時間為ts.
(1)當(dāng)t為何值時,四邊形ABQP是矩形;
(2)當(dāng)t為何值時,四邊形AQCP是菱形;
(3)分別求出(2)中菱形AQCP的周長和面積.
【答案】(1)t=3,ABQP是矩形;(2)t=,AQCP是菱形;(3)周長為:15cm,面積為:(cm2).
【解析】
(1)當(dāng)四邊形ABQP是矩形時,BQ=AP,據(jù)此求得t的值;
(2)當(dāng)四邊形AQCP是菱形時,AQ=AC,列方程求得運動的時間t;
(3)菱形的四條邊相等,則菱形的周長=4AQ,面積=CQ×AB.
解:(1)由已知可得,BQ=DP=t,AP=CQ=6-t
在矩形ABCD中,∠B=90°,AD∥BC,
當(dāng)BQ=AP時,四邊形ABQP為矩形,
∴t=6-t,得t=3
故當(dāng)t=3s時,四邊形ABQP為矩形.
(2)AD∥BC,AP=CQ=6-t,
∴四邊形AQCP為平行四邊形
∴當(dāng)AQ=CQ時,四邊形AQCP為菱形
即=6t時,四邊形AQCP為菱形,解得t=,
故當(dāng)t=s時,四邊形AQCP為菱形.
(3)當(dāng)t=時,AQ=,CQ=,
則周長為:4AQ=4×=15cm
面積為:CQAB=×3=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車廠計劃半年內(nèi)每月生產(chǎn)汽車20輛,由于另有任務(wù),每月上班人數(shù)不一定相等,實每月生產(chǎn)量與計劃量相比情況如下表(增加為正,減少為負(fù))
(1)生產(chǎn)量最多的一天比生產(chǎn)量最少的一天多生產(chǎn)多少輛?
(2)半年內(nèi)總生產(chǎn)量是多少?比計劃多了還是少了,增加或減少多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“QQ空間”等級是用戶資料和身份的象征,按照空間積分劃分不同的等級.當(dāng)用戶在10級以上,每個等級與對應(yīng)的積分有一定的關(guān)系.現(xiàn)在知道第10級的積分是90,第11級的積分是160,第12級的積分是250,第13級的積分是360,第14級的積分是490…若某用戶的空間積分達到1000,則他的等級是( )
A.15B.16C.17D.18
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,BD垂直平分AC,垂足為F,分別過點B作直線BE∥AD,過點A作直線EA⊥AC于點A,兩直線交于點E.
(1)求證:四邊形AEBD是平行四邊形;
(2)如果∠ABE=∠ABD=60°,AD=2,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的切線,B為切點,圓心O在AC上,∠A=30°,D為的中點.
(1)求證:AB=BC;
(2)試判斷四邊形BOCD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,a、b、c分別是∠A、∠B、∠C的對邊,下列條件不能判斷△ABC是直角三角形的是( )
A. b2﹣c2=a2B. a:b:c=3:4:5
C. ∠A:∠B:∠C=9:12:15D. ∠C=∠A﹣∠B
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名同學(xué)某學(xué)期的四次數(shù)學(xué)測試成績(單位:分)如下表:
第一次 | 第二次 | 第三次 | 第四次 | |
甲 | 87 | 95 | 85 | 93 |
乙 | 80 | 80 | 90 | 90 |
據(jù)上表計算,甲、乙兩名同學(xué)四次數(shù)學(xué)測試成績的方差分別為S甲2=17、S乙2=25,下列說法正確的是( )
A. 甲同學(xué)四次數(shù)學(xué)測試成績的平均數(shù)是89分
B. 甲同學(xué)四次數(shù)學(xué)測試成績的中位數(shù)是90分
C. 乙同學(xué)四次數(shù)學(xué)測試成績的眾數(shù)是80分
D. 乙同學(xué)四次數(shù)學(xué)測試成績較穩(wěn)定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形ABCD的邊BC在x軸的正半軸上,點B在點C的左側(cè),直線y=kx經(jīng)過點A(2,2)和點P,且OP=4,將直線y=kx沿y軸向下平移得到直線y=kx+b,若點P落在矩形ABCD的內(nèi)部,則b的取值范圍是( )
A. 0<b<2 B. -2<b<0 C. -4<b<2 D. -4<b<-2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在菱形ABCD中,∠ABC=60°,點P是射線BD上一動點,以AP為邊向右側(cè)作等邊△APE,點E的位置隨著點P的位置變化而變化.
(1)探索發(fā)現(xiàn)
如圖1,當(dāng)點E在菱形ABCD內(nèi)部時,連接CE,BP與CE的數(shù)量關(guān)系是_______,CE與AD的位置關(guān)系是_______.
(2)歸納證明
證明2,當(dāng)點E在菱形ABCD外部時,(1)中的結(jié)論是否還成立?若成立,請予以證明;若不成立,請說明理由.
(3)拓展應(yīng)用
如圖3,當(dāng)點P在線段BD的延長線上時,連接BE,若AB=5,BE=13,請直接寫出線段DP的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com