【題目】已知拋物線y=﹣x2+2kx﹣k2+k+3(k為常數(shù))的頂點(diǎn)縱坐標(biāo)為4.
(1)求k的值;
(2)設(shè)拋物線與直線y=﹣(x﹣3)(m≠0)兩交點(diǎn)的橫坐標(biāo)為x1,x2,n=x1+x2﹣2,若A(1,a),B(b,)兩點(diǎn)在動(dòng)點(diǎn)M(m,n)所形成的曲線上,求直線AB的解析式;
(3)將(2)中的直線AB繞點(diǎn)(3,0)順時(shí)針旋轉(zhuǎn)45°,與拋物線x軸上方的部分相交于點(diǎn)C,請(qǐng)直接寫(xiě)出點(diǎn)C的坐標(biāo).
【答案】(1)1;(2);(3)(2,3).
【解析】
(1)利用配方法即可解決問(wèn)題;
(2)由題意,方程-x2+2x+3=-(x-3)的兩實(shí)數(shù)根分別為x1,x2,整理得,,推出x1+x2=+2,由n=x1+x2﹣2,推出n=+2-2=,即動(dòng)點(diǎn)M(m,n)所形成的曲線為y=,由A(1,a),B(b,)兩點(diǎn)在該曲線上,推出A(1,1),B(2,),再利用待定系數(shù)法即可解決問(wèn)題;
(3)由直線AB的解析式為y=﹣x+,A(1,1),推出點(diǎn)D(3,0)在直線AB上,取點(diǎn)E(2,3),則AE=AD=,ED=,推出AE2+AD2=ED2,推出∠EAD=90°,由AE=AD,推出∠ADE=45°,可得直線ED的解析式為y=﹣3x+9,構(gòu)建方程組即可求出點(diǎn)C坐標(biāo).
(1)y=﹣x2+2kx﹣k2+k+3=﹣(x﹣k)2+k+3,
∵頂點(diǎn)縱坐標(biāo)為4,
∴k+3=4,
∴k=1;
(2)∵k=1,
∴拋物線為y=﹣x2+2x+3,
由題意,方程-x2+2x+3=-(x-3)的兩實(shí)數(shù)根分別為x1,x2,
整理得,,
∴x1+x2=+2,
∵n=x1+x2﹣2,
∴n=+2-2=,
即動(dòng)點(diǎn)M(m,n)所形成的曲線為y=,
∵A(1,a),B(b,)兩點(diǎn)在該曲線上,
∴A(1,1),B(2,),
設(shè)直線AB解析式為y=k'x+b',把A(1,1),B(2,)代入得,,
解得,
∴直線AB的解析式為y=﹣x+;
(3)如圖,
∵直線AB的解析式為y=﹣x+,A(1,1),
∴點(diǎn)D(3,0)在直線AB上,
取點(diǎn)E(2,3),則AE=AD=,ED=,
∴AE2+AD2=ED2,
∴∠EAD=90°,
∵AE=AD,
∴∠ADE=45°,
∵設(shè)直線DE解析式為y=k″x+b″,把D(3,0),E(2,3)代入得,,
解得,
∴直線ED的解析式為y=﹣3x+9,
由,解得或,
∵D(3,0),
∴C(2,3).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+2x+c(a<0)與x軸交于點(diǎn)A和點(diǎn)B(點(diǎn)A在原點(diǎn)的左側(cè),點(diǎn)B在原點(diǎn)的右側(cè)),與y軸交于點(diǎn)C,OB=OC=3.
(1)求該拋物線的函數(shù)解析式.
(2)如圖1,連接BC,點(diǎn)D是直線BC上方拋物線上的點(diǎn),連接OD,CD.OD交BC于點(diǎn)F,當(dāng)S△COF:S△CDF=3:2時(shí),求點(diǎn)D的坐標(biāo).
(3)如圖2,點(diǎn)E的坐標(biāo)為(0,),點(diǎn)P是拋物線上的點(diǎn),連接EB,PB,PE形成的△PBE中,是否存在點(diǎn)P,使∠PBE或∠PEB等于2∠OBE?若存在,請(qǐng)直接寫(xiě)出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】電影公司隨機(jī)收集了2000部電影的有關(guān)數(shù)據(jù),經(jīng)分類整理得到如表:
電影類型 | 第一類 | 第二類 | 第三類 | 第四類 | 第五類 | 第六類 |
電影部數(shù) | 140 | 50 | 300 | 200 | 800 | 510 |
好評(píng)率 |
注:好評(píng)率是指一類電影中獲得好評(píng)的部數(shù)與該類電影的部數(shù)的比值.
如果電影公司從收集的電影中隨機(jī)選取1部,那么抽到的這部電影是獲得好評(píng)的第四類電影的概率是______;
電影公司為了增加投資回報(bào),擬改變投資策略,這將導(dǎo)致不同類型電影的好評(píng)率發(fā)生變化假設(shè)表格中只有兩類電影的好評(píng)率數(shù)據(jù)發(fā)生變化,那么哪類電影的好評(píng)率增加,哪類電影的好評(píng)率減少,可使改變投資策略后總的好評(píng)率達(dá)到最大?
答:______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在將式子(m>0)化簡(jiǎn)時(shí),
小明的方法是:===;
小亮的方法是: ;
小麗的方法是:.
則下列說(shuō)法正確的是( 。
A. 小明、小亮的方法正確,小麗的方法不正確
B. 小明、小麗的方法正確,小亮的方法不正確
C. 小明、小亮、小麗的方法都正確
D. 小明、小麗、小亮的方法都不正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸于點(diǎn)、(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn).將拋物線繞點(diǎn)旋轉(zhuǎn),得到新的拋物線,它的頂點(diǎn)為,與軸的另一個(gè)交點(diǎn)為.若四邊形為矩形,則,應(yīng)滿足的關(guān)系式為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為的直徑,點(diǎn)在上,延長(zhǎng)至點(diǎn),使,延長(zhǎng)與的另一個(gè)交點(diǎn)為,連接,.
求證:;
若,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,AB=10cm,BC=8cm,點(diǎn)P從點(diǎn)A沿AC向點(diǎn)C以1cm/s的速度運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C沿CB向點(diǎn)B以2cm/s的速度運(yùn)動(dòng)(點(diǎn)Q運(yùn)動(dòng)到點(diǎn)B停止)。則四邊形PABQ的面積y()與運(yùn)動(dòng)時(shí)間x(s)之間的函數(shù)圖象為( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在2016年泉州市初中體育中考中,隨意抽取某校5位同學(xué)一分鐘跳繩的次數(shù)分別為:158,160,154,158,170,則由這組數(shù)據(jù)得到的結(jié)論錯(cuò)誤的是( 。
A. 平均數(shù)為160 B. 中位數(shù)為158 C. 眾數(shù)為158 D. 方差為20.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有三張正面分別標(biāo)有數(shù)字,2,4的不透明卡片,它們除數(shù)字外都相同;現(xiàn)將它們背面朝上,洗勻后,從三張卡片中隨機(jī)地抽出一張,記住數(shù)字;
若把抽出的卡片放回,洗勻后,再?gòu)娜龔埧ㄆ须S機(jī)抽出一張,記住數(shù)字試用列表或樹(shù)狀圖的方法,求兩次抽取的卡片上的數(shù)字為一正數(shù)、一負(fù)數(shù)的概率.
若不把抽出的卡片放回,再?gòu)氖S鄡蓮埧ㄆ须S機(jī)抽出一張,直接寫(xiě)出兩次抽取卡片上的數(shù)字為一正數(shù)、一負(fù)數(shù)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com