【題目】如圖所示,將正方形折疊,使頂點與邊上的一點重合(不與端點,重合),折痕交于點,交于點,邊折疊后與邊交于點,連接,連接.
(1)若,,求的長;
(2)求證:.
【答案】(1);(2)見解析.
【解析】
(1)由,可求∠AFB=60°.由折疊的性質(zhì)求出∠2=30°,從而,由30°角的性質(zhì)可求EF=2AE=20,由此得BE=EF=20,所以AB=30,由銳角的余弦函數(shù)求出BF的長;
(2)如圖,過作于點,連接.先根據(jù)“AAS”證明,再根據(jù)“HL”證明,然后可證明結(jié)論正確.
(1)如圖,
,
∴∠AFB=90°-30°=60°.
∵折疊后點落在點處,
,,
,EF=BF,
∠AFE=∠AFB-
∴EF=2AE=20,
AB=AE +BE=30,
sin∠AFB=
BF===
(2)如圖,過作于點,連接.
在正方形中,折疊后點落在點處,
,,,
,.
又,
.
又,,
,
,.
又,
.
在與中,
,,
,
.
,
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點D是AB邊的中點,過D作DE⊥BC于點E,點P是邊BC上的一個動點,AP與CD相交于點Q.當(dāng)AP+PD的值最小時,AQ與PQ之間的數(shù)量關(guān)系是( )
A.AQ= PQ B.AQ=3PQ C.AQ=PQ D.AQ=4PQ
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點的坐標(biāo)為,動點從點出發(fā),沿軸以每秒個單位的速度向上移動,且過點的直線也隨之移動,如果點關(guān)于的對稱點落在坐標(biāo)軸上,沒點的移動時間為,那么的值可以是___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明大學(xué)畢業(yè)回家鄉(xiāng)創(chuàng)業(yè),第一期培植盆景與花卉各50盆售后統(tǒng)計,盆景的平均每盆利潤是160元,花卉的平均每盆利潤是19元,調(diào)研發(fā)現(xiàn):
①盆景每增加1盆,盆景的平均每盆利潤減少2元;每減少1盆,盆景的平均每盆利潤增加2元;②花卉的平均每盆利潤始終不變.
小明計劃第二期培植盆景與花卉共100盆,設(shè)培植的盆景比第一期增加x盆,第二期盆景與花卉售完后的利潤分別為W1,W2(單位:元)
(1)用含x的代數(shù)式分別表示W1,W2;
(2)當(dāng)x取何值時,第二期培植的盆景與花卉售完后獲得的總利潤W最大,最大總利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:各類方程的解法
求解一元一次方程,根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為x=a的形式.求解二元一次方程組,把它轉(zhuǎn)化為一元一次方程來解;類似的,求解三元一次方程組,把它轉(zhuǎn)化為解二元一次方程組.求解一元二次方程,把它轉(zhuǎn)化為兩個一元一次方程來解.求解分式方程,把它轉(zhuǎn)化為整式方程來解,由于“去分母”可能產(chǎn)生增根,所以解分式方程必須檢驗.各類方程的解法不盡相同,但是它們有一個共同的基本數(shù)學(xué)思想轉(zhuǎn)化,把未知轉(zhuǎn)化為已知.
用“轉(zhuǎn)化”的數(shù)學(xué)思想,我們還可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通過因式分解把它轉(zhuǎn)化為x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.
(1)問題:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;
(2)拓展:用“轉(zhuǎn)化”思想求方程的解;
(3)應(yīng)用:如圖,已知矩形草坪ABCD的長AD=8m,寬AB=3m,小華把一根長為10m的繩子的一端固定在點B,沿草坪邊沿BA,AD走到點P處,把長繩PB段拉直并固定在點P,然后沿草坪邊沿PD、DC走到點C處,把長繩剩下的一段拉直,長繩的另一端恰好落在點C.求AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三個頂點都在⊙O上,AB=AC,⊙O的半徑等于10cm,圓心O到BC的距離為6cm,則AB的長等于____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:正方形ABCD,∠EAF=45°.
(1)如圖,當(dāng)點E、F分別在邊BC、CD上,連接EF,求證:EF=BE+DF;
童威同學(xué)是這樣思考的,請你和他一起完成如下解答:證明:將△ADF繞點A順時針旋轉(zhuǎn)90°,得△ABG,所以△ADF≌△ABG.
(2)如圖,點M、N分別在邊AB、CD上,且BN=DM.當(dāng)點E、F分別在BM、DN上,連接EF,探究三條線段EF、BE、DF之間滿足的數(shù)量關(guān)系,并證明你的結(jié)論.
(3)如圖,當(dāng)點E、F分別在對角線BD、邊CD上.若FC=2,則BE的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=BC,∠ABC=90°,點D、E分別是邊AB、BC的中點,點F、G是邊AC的三等分點,DF、EG的延長線相交于點H,連接HA、HC.
(1)求證:四邊形FBGH是菱形;
(2)求證:四邊形ABCH是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O的內(nèi)接四邊形ABCD中,AB=3,AD=5,∠BAD=60°,點C為弧BD的中點,則AC的長是__.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com