如圖,在等腰梯形ABCD中,,對角線于點(diǎn)O,,垂足分別為E、F,設(shè)AD=a,BC=b,則四邊形AEFD的周長是( )
A. B. C. D.
A
【解析】
試題分析:首先過點(diǎn)A作AK∥BD,交CB的延長線于K,易證得四邊形AKBD是平行四邊形,又由四邊形ABCD是等腰梯形,根據(jù)三線合一與直角三角形斜邊上的中線等于斜邊的一半的知識,即可求得AE=CK,又由AD∥BC,AE⊥BC,DF⊥BC,可得四邊形AEFD是矩形,即可求得DF=AE,EF=AD,則可求得四邊形AEFD的周長.
過點(diǎn)A作AK∥BD,交CB的延長線于K,
∵AD∥BC,
∴四邊形AKBD是平行四邊形,
∴AK=BD,BK=AD,AK∥BD,
∵四邊形ABCD是等腰梯形,
∴AC=BD,
∴AK=AC,
∵AC⊥BD,
∴AK⊥AC,
∵AE⊥CK,
∴EK=EC,
∴AE=CK=(BC+BK)=(BC+AD)=(b+a),
∵AD∥BC,AE⊥BC,DF⊥BC,
∴DF=AE=(b+a),
四邊形AEFD是矩形,
∴EF=AD=a,
∴四邊形AEFD的周長是:AE+EF+DF+AD=(b+a)+a+(b+a)+a=3a+b,
故選A.
考點(diǎn):此題考查了等腰梯形的性質(zhì),平行四邊形的判定與性質(zhì)
點(diǎn)評:解答本題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用,注意輔助線的作法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:中考必備’04全國中考試題集錦·數(shù)學(xué) 題型:044
如圖,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,點(diǎn)P從A點(diǎn)出發(fā)沿AD邊向點(diǎn)D移動,點(diǎn)Q自A點(diǎn)出發(fā)沿A→B→C的路線移動,且PQ∥DC,若AP=x,梯形位于線段PQ右側(cè)部分的面積為S.
(1)分別求出當(dāng)點(diǎn)Q位于AB、BC上時,S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當(dāng)線段PQ將梯形AB∥⊥CD分成面積相等的兩部分時,x的值是多少?
(3)當(dāng)(2)的條件下,設(shè)線段PQ與梯形AB∥⊥CD的中位線EF交于O點(diǎn),那么OE與OF的長度有什么關(guān)系?借助備用圖說明理由;并進(jìn)一步探究:對任何一個梯形,當(dāng)一直線l經(jīng)過梯形中位線的中點(diǎn)并滿足什么條件時,一定能平分梯形的面積?(只要求說出條件,不需要證明)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com