如圖,在平面直角坐標(biāo)系中,等邊中,BC∥軸,且BC=,頂點A在拋物線上運(yùn)動.

(1)當(dāng)頂點A運(yùn)動至與原點重合時,頂點C是否在該拋物線上?
(2)在運(yùn)動過程中有可能被軸分成兩部分,當(dāng)上下兩部分的面積之比為1:8(即)時,求頂點A的坐標(biāo);
(3)在運(yùn)動過程中,當(dāng)頂點B落在坐標(biāo)軸上時,直接寫出頂點C的坐標(biāo).

(1)在;(2);(3)、

解析試題分析:(1)當(dāng)頂點A運(yùn)動至與原點重合時,設(shè)BC與y軸交于點D,由BC∥x軸,BC=AC=,可得,,即可得到C點的坐標(biāo),再代入拋物線解析式即可作出判斷;
(2)過點A作于點D,設(shè)點A的坐標(biāo)為(,).由根據(jù)相似三角形的性質(zhì)可得,再根據(jù)等邊三角形的性質(zhì)可求得的長,即可求得結(jié)果;
(3)根據(jù)函數(shù)圖象上的點的坐標(biāo)的特征結(jié)合二次函數(shù)的性質(zhì)求解即可.
(1)當(dāng)頂點A運(yùn)動至與原點重合時,設(shè)BC與y軸交于點D
∵BC∥x軸,BC=AC=
,
∴C點的坐標(biāo)為
∵當(dāng)時,
∴當(dāng)頂點A運(yùn)動至與原點重合時,頂點C在拋物線上;
(2)過點A作于點D,

設(shè)點A的坐標(biāo)為(,).
,

∵等邊的邊長為,


,解得
∴頂點A的坐標(biāo)為;
(3)當(dāng)頂點B落在坐標(biāo)軸上時,頂點C的坐標(biāo)為、
考點:二次函數(shù)的綜合題
點評:此類問題是初中數(shù)學(xué)的重點和難點,在中考中極為常見,一般以壓軸題形式出現(xiàn),難度較大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點,其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(4,0),D點坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運(yùn)動,路徑為O→A→B→C,到達(dá)點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案