下列命題正確的是( 。
| A. | 矩形的對角線互相垂直 |
| B. | 兩邊和一角對應(yīng)相等的兩個三角形全等 |
| C. | 分式方程+1=可化為一元一次力程x﹣2+(2x﹣1)=﹣1.5 |
| D. | 多項式t2﹣16+3t因式分解為(t+4)(t﹣4)+3t |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
綜合與探究
如圖1,在平面直角坐標(biāo)系xOy中,拋物線W的函數(shù)表達(dá)式為y=﹣x2+x+4.拋物線W與x軸交于A,B兩點(點B在點A的右側(cè),與y軸交于點C,它的對稱軸與x軸交于點D,直線l經(jīng)過C、D兩點.
(1)求A、B兩點的坐標(biāo)及直線l的函數(shù)表達(dá)式.
(2)將拋物線W沿x軸向右平移得到拋物線W′,設(shè)拋物線W′的對稱軸與直線l交于點F,當(dāng)△ACF為直角三角形時,求點F的坐標(biāo),并直接寫出此時拋物線W′的函數(shù)表達(dá)式.
(3)如圖2,連接AC,CB,將△ACD沿x軸向右平移m個單位(0<m≤5),得到△A′C′D′.設(shè)A′C交直線l于點M,C′D′交CB于點N,連接CC′,MN.求四邊形CMNC′的面積(用含m的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
先化簡:(﹣)÷,然后解答下列問題:
(1)當(dāng)x=3時,求原代數(shù)式的值;
(2)原代數(shù)式的值能等于﹣1嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知拋物線y=﹣(x+2)(x﹣m)(m>0)與x軸相交于點A、B,與y軸相交于點C,且點A在點B的左側(cè).
(1)若拋物線過點G(2,2),求實數(shù)m的值;
(2)在(1)的條件下,解答下列問題:
①求出△ABC的面積;
②在拋物線的對稱軸上找一點H,使AH+CH最小,并求出點H的坐標(biāo);
(3)在第四現(xiàn)象內(nèi),拋物線上是否存在點M,使得以點A、B、M為頂點的三角形與△ACB相似?若存在,求m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,AB為半圓O的在直徑,AD、BC分別切⊙O于A、B兩點,CD切⊙O于點E,連接OD、OC,下列結(jié)論:①∠DOC=90°,②AD+BC=CD,③S△AOD:S△BOC=AD2:AO2,④OD:OC=DE:EC,⑤OD2=DE•CD,正確的有( )
| A. | 2個 | B. | 3個 | C. | 4個 | D. | 5個 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com