【題目】如圖,平面直角坐標(biāo)系中,已知點A(0,5),點P(m,5)在第二象限,連接AP、OP

(1) 如圖1,若OP=6,求m的值

(2) 如圖2,點Cx軸負(fù)半軸上,以CP為斜邊作直角三角形BCP,∠CBP=90°,且∠BPC=∠APO.取OC的中點D,連接AD、BD,求證:AD=BD

(3) 如圖3,將△AOP沿直線OP翻折得到△EOP(點A的對應(yīng)點為點E).若點Ex軸的距離不大于3,直接寫出m的取值范圍(無需解答過程)

【答案】(1)- (2)證明見解析(3)-10≤m≤-

【解析】

(1)根據(jù)勾股定理計算PA的長,可得m的值;

(2)如圖2,作輔助線,構(gòu)建平行四邊形PMDN,得PM=DN,DM=PN,PMD=PND,又M、N分別為RtPBC、RtPAO斜邊的中點,可得BM=MP,AN=PN,證明DNA≌△BMD,得AD=BD;

(3)由條件可知點E的縱坐標(biāo)大于或等于-3小于或等于3,分別計算點E的縱坐標(biāo)為3-3m的值可得m的取值范圍.

1)由點A(0,5),點P(m,5)可知PAy軸,

OP=6,OA=5,

由勾股定理可求PA=,

m=-;

(2)如圖2,取CP、OP中點M、N,連接DM、DN、BM、AN,

D、M、N分別為OC、PC、PO的中點,

DMPO,DNPC,

∴四邊形PMDN是平行四邊形,

PM=DN,DM=PN,PMD=PND,

M、N分別為RtPBC、RtPAO斜邊的中點,

BM=MP,AN=PN,

∵∠BPC=APO

∴∠BMP=ANP,

∴∠BMP+PMD=ANP+PND,

∴∠DNA=BMD,

∴△DNA≌△BMD,

AD=BD;

(3)由條件可知點E的縱坐標(biāo)大于或等于-3小于或等于3,

①當(dāng)點E的縱坐標(biāo)為3時,如圖4,過點EESx軸于S,交直線APR,

RtOES中,OE=OA=5,ES=3,可求OS=AR=4,RE=2,

PA=PE=-m,PR=4+m,

RtPRE中,由22+(4+m)2=(-m)2,

解得:m=;

②當(dāng)點E的縱坐標(biāo)為-3時,如圖5,過點EESx軸于S,交直線APR,

RtOES中,OE=OA=5,ES=3,

OS=AR=4,

PR=10-4=6,

由勾股定理得:RE==8,

PA=PE=-m,PR=-4-m,

Rt△△PRE中,由82+(4+m)2=(-m)2,

解得:m=-10,

綜上所述,當(dāng)-10≤m≤時,點Ex軸的距離不大于3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校去年在某商場購買甲、乙兩種不同足球,購買甲種足球共花費2400元,購買乙種足球共花費1600元,購買甲種足球數(shù)量是購買乙種足球數(shù)量的2倍.且購買一個乙種足球比購買一個甲種足球多花20元.
(1)求購買一個甲種足球、一個乙種足球各需多少元;
(2)今年學(xué)校為編排“足球操”,決定再次購買甲、乙兩種足球共50個.如果兩種足球的單價沒有改變,而此次購買甲、乙兩種足球的總費用不超過3500元,那么這所學(xué)校最少可購買多少個甲種足球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四邊形ADEF是正方形,點B、C分別在邊AD、AF上,此時BD=CF,BD⊥CF成立.

(1)當(dāng)△ABC繞點A逆時針旋轉(zhuǎn)θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明,若不成立,請說明理由;

(2)當(dāng)△ABC繞點A逆時針旋轉(zhuǎn)45°時,如圖3,延長BD交CF于點H.

①求證:BD⊥CF;
②當(dāng)AB=2,AD=3 時,求線段DH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面內(nèi)的兩條直線有相交和平行兩種位置關(guān)系.

(1)如圖①,若AB∥CD,點P在AB,CD外部,則有 ∠B=∠BOD,又因為∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.將點P移到AB,CD內(nèi)部,如圖②,以上結(jié)論是否成立?若成立,請說明理由;若不成立,則∠BPD,∠B,∠D之間有何數(shù)量關(guān)系?請證明你的結(jié)論;

(2)在圖②中,將直線AB繞點B逆時針方向旋轉(zhuǎn)一定角度交直線CD于點Q,如圖③,則∠BPD,∠B,∠D,∠BQD之間有何數(shù)量關(guān)系?(不需證明)

(3)根據(jù)(2)的結(jié)論,求圖④中∠A+∠B+∠C+∠D+∠E的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,對角線AC、BD相交于點O,AO=CO,BO=DO,且∠ABC+∠ADC=180°

(1) 求證:四邊形ABCD是矩形

(2) DE⊥ACBCE,∠ADB∶∠CDB=2∶3,則∠BDE的度數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題

情景:

試根據(jù)圖中的信息,解答下列問題:

(1)購買6根跳繩需___________元,購買12根跳繩需_____________元

(2)小紅比小明多買2根,付款時小紅反而比小明少5元,你認(rèn)為有這種可能嗎?若有,請求出小紅購買跳繩的根數(shù);若沒有,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,EBC的中點,BE=AD=.

(1)求線段BC、AB的長;

(2)求線段AC的長;

(3)求線段DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了更好地治理水質(zhì),保護(hù)環(huán)境,我縣污水處理公司決定購買10臺污水處理設(shè)備,現(xiàn)有A、B兩種設(shè)備可供選擇,月處理污水分別為240m3/月、200m3/月,經(jīng)調(diào)查:購買一臺A型設(shè)備比購買一臺B型設(shè)備多2萬元,購買2A型設(shè)備比購買3B型設(shè)備少6萬元.

(1)若污水處理公司購買設(shè)備的預(yù)算資金不超過105萬元,你認(rèn)為該公司有哪幾種購買方案?

(2)若每月需處理的污水約2040m3,在不突破資金預(yù)算的前提下,為了節(jié)約資金,又要保證治污效果,請你為污水處理公司設(shè)計一種最省錢的方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC,以AB為直徑的⊙O分別交AC于D,BC于E,連接ED,若ED=EC.

(1)求證:AB=AC;
(2)若AB=4,BC=2 ,求CD的長.

查看答案和解析>>

同步練習(xí)冊答案