已知△ABC是邊長(zhǎng)為4的等邊三角形,BC在x軸上,點(diǎn)D為BC的中點(diǎn),點(diǎn)A在第一象限內(nèi),AB與y軸的正半軸相交于點(diǎn)E,點(diǎn)B(-1,0),P是AC上的一個(gè)動(dòng)點(diǎn)(P與點(diǎn)A、C不重合)

(1)(2分)求點(diǎn)A、E的坐標(biāo);

(2)(2分)若y=過點(diǎn)A、E,求拋物線的解析式。

(3)(5分)連結(jié)PB、PD,設(shè)L為△PBD的周長(zhǎng),當(dāng)L取最小值時(shí),求點(diǎn)P的坐標(biāo)及L的最小值,并判斷此時(shí)點(diǎn)P是否在(2)中所求的拋物線上,請(qǐng)充分說明你的判斷理由

 

 

(1)E(0,

(2)y=

(3)在

解析:解:(1)連結(jié)AD,不難求得A(1,2

    OE=,得E(0,

(2)因?yàn)閽佄锞y=過點(diǎn)A、E

    由待定系數(shù)法得:c=,b=

     拋物線的解析式為y=

(3)大家記得這樣一個(gè)常識(shí)嗎?

    “牽牛從點(diǎn)A出發(fā),到河邊l喝水,再到點(diǎn)B處吃草,走哪條路徑最短?”即確定l上的點(diǎn)P

    方法是作點(diǎn)A關(guān)于l的對(duì)稱點(diǎn)A',連結(jié)A'B與l的交點(diǎn)P即為所求.

     

    本題中的AC就是“河”,B、D分別為“出發(fā)點(diǎn)”和“草地”。

由引例并證明后,得先作點(diǎn)D關(guān)于AC的對(duì)稱點(diǎn)D',

連結(jié)BD'交AC于點(diǎn)P,則PB與PD的和取最小值,

即△PBD的周長(zhǎng)L取最小值。

不難求得∠D'DC=30º

DF=,DD'=2

求得點(diǎn)D'的坐標(biāo)為(4,

直線BD'的解析式為:x+

直線AC的解析式為:

求直線BD'與AC的交點(diǎn)可得點(diǎn)P的坐標(biāo)(,)。

此時(shí)BD'===2

所以△PBD的最小周長(zhǎng)L為2+2

把點(diǎn)P的坐標(biāo)代入y=成立,所以此時(shí)點(diǎn)P在拋物線上。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC是邊長(zhǎng)為6cm的等邊三角形,動(dòng)點(diǎn)P,Q同時(shí)從A、B兩點(diǎn)出發(fā),分別沿AB、BC方向精英家教網(wǎng)勻速運(yùn)動(dòng),其中點(diǎn)P運(yùn)動(dòng)的速度是1cm/s,點(diǎn)Q運(yùn)動(dòng)的速度是2cm/s,當(dāng)點(diǎn)Q運(yùn)動(dòng)到點(diǎn)C時(shí),P,Q都停止運(yùn)動(dòng).
(1)出發(fā)后運(yùn)動(dòng)2s時(shí),試判斷△BPQ的形狀,并說明理由;那么此時(shí)PQ和AC的位置關(guān)系呢?請(qǐng)說明理由;
(2)設(shè)運(yùn)動(dòng)時(shí)間為t,△BPQ的面積為S,請(qǐng)用t的表達(dá)式表示S.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC是邊長(zhǎng)為1cm的等邊三角形,以BC為邊作等腰三角形BCD,使得DB=DC,且∠BDC=120°,點(diǎn)M是AB邊上的一個(gè)動(dòng)點(diǎn),作∠MDN交AC邊于點(diǎn)N,且滿足∠MDN=60°,則△AMN的周長(zhǎng)為
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC是邊長(zhǎng)為2
3
的等邊三角形.點(diǎn)E、F分別在CB和BC的延長(zhǎng)線上,且∠EAF=12O°,設(shè)BE=x,CF=y.
(1)求y與x的函數(shù)表達(dá)式,并求出自變量x的取值范圍.
(2)當(dāng)x為何值時(shí),△ABE≌△FCA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1998•江西)如圖,已知△ABC是邊長(zhǎng)為4的等邊三角形,AB在x軸上,點(diǎn)C在第一象限,AC交y軸于點(diǎn)D,點(diǎn)A的坐標(biāo)為(-1,0).
(1)求B、C、D三點(diǎn)的坐標(biāo);
(2)拋物線y=ax2+bx+c經(jīng)過B、C、D三點(diǎn),求它的解析式;
(3)過點(diǎn)D作DE∥AB交經(jīng)過B、C、D三點(diǎn)的拋物線于點(diǎn)E,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC是邊長(zhǎng)為1的等邊三角形,△DBC是以BC為斜邊的等腰直角三角形,那么點(diǎn)B到直線AD的距離為:
1
2
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案