【題目】一輛最大載重48噸的大型貨車,貨車的貨箱是長14m,寬2.5m,高3m的長方體,現(xiàn)有甲種貨物18噸,乙種貨物70m3,而甲種貨物每噸的體積為2.5m3,乙種貨物每立方米0.5噸.問:
(1)甲、乙兩種貨物是否都能裝上車?請說明理由.
(2)為了最大地利用車的載重量和貨箱的容積,兩種貨物應各裝多少噸?
【答案】(1)不能全部裝上船,見解析;(2)裝甲種貨物為18噸,裝乙種貨物為30噸
【解析】
(1)根據(jù)貨物的總重量與貨車的總載重進行比較,得到答案.
(2)通過理解題意可知本題存在兩個等量關系,即甲種貨物的總質量+乙種貨物的總質量=48噸,甲種貨物所占的總體積+乙種貨物所占的總體積=貨箱體積,根據(jù)這兩個等量關系設出未知數(shù),列出方程求解即可.
解:(1)由于18+=158>48,故不能全部裝上船.
(2)設裝甲種貨物質量為x噸,裝乙種貨物質量為(48﹣x)噸.
根據(jù)題意,得2.5x+=14×2.5×3,
解得x=18.
則48﹣x=48﹣18=30(噸)
答:裝甲種貨物為18噸,裝乙種貨物為30噸
科目:初中數(shù)學 來源: 題型:
【題目】某服裝廠生產(chǎn)一種西裝和領帶,西裝每套定價400元,領帶每條定價50元.廠方在開展促銷活動期間,向客戶提供兩種優(yōu)惠方案:
方案①:買一套西裝送一條領帶;
方案②:西裝和領帶都按定價的90%付款.
現(xiàn)某客戶要到該服裝廠購買西裝20套,領帶x條(x>20)
(1)若該客戶按方案①購買,需付款 元(用含x的代數(shù)式表示);
若該客戶按方案②購買,需付款 元(用含x的代數(shù)式表示);
(2)若x=30,通過計算說明此時按哪種方案購買較為合算?
(3)若兩種優(yōu)惠方案可同時使用,當x=30時,你能給出一種更為省錢的購買方案嗎?試寫出你的購買方法并計算出此種方案的付款金額.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在正方形ABCD中,點E、F分別為邊BC、CD的中點,AF、DE相交于點G,則可得結論:①AF=DE,②AF⊥DE(不須證明).
(1)如圖②,若點E、F不是正方形ABCD的邊BC、CD的中點,但滿足CE=DF,則上面的結論①、②是否仍然成立;(請直接回答“成立”或“不成立”)
(2)如圖③,若點E、F分別在正方形ABCD的邊CB的延長線和DC的延長線上,且CE=DF,此時上面的結論①、②是否仍然成立?若成立,請寫出證明過程;若不成立,請說明理由.
(3)如圖④,在(2)的基礎上,連接AE和EF,若點M、N、P、Q分別為AE、EF、FD、AD的中點,請先判斷四邊形MNPQ是“矩形、菱形、正方形、等腰梯形”中的哪一種,并寫出證明過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,點D是BC上一動點,連接AD,將△ACD沿AD折疊,點C落在點E處,連接DE交AB于點F,當△DEB是直角三角形時,DF的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB,CD相交于點O,∠BOC=80°,OE是∠BOC的角平分線,OF⊥OE.
(1)求∠COF的度數(shù);
(2)說明OF平分∠AOC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】按下面的程序計算:當輸入x=100 時,輸出結果是299;當輸入x=50時,輸出結果是446;如果輸入 x 的值是正整數(shù),輸出結果是257,那么滿足條件的x的值最多有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過A(-2,0)B(-3,3)及原點O,頂點為C。
(1)求拋物線的解析式;
(2)若點D在拋物線上,點E在拋物線的對稱軸上,且A、O、D、E為頂點的四邊形是平行四邊形,求點D的坐標。
(3)P是拋物線上的第一象限內(nèi)的動點,過點P作PM⊥ x軸,垂足為M,是否存在點P點使得以P、M、A為頂點的三角形與△BOC相似?若存在,求P點的坐標,若不存在,說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,直線y=-x+3與x軸、y軸相交于A、B兩點,點C在線段OA上,將線段CB繞著點C順時針旋轉90°得到CD,此時點D恰好落在直線AB上,過點D作DE⊥x軸于點E.
(1)求證:△BOC≌△CED;
(2)如圖2,將△BCD沿x軸正方向平移得△B'C'D',當B'C'經(jīng)過點D時,求△BCD平移的距離及點D的坐標;
(3)若點P在y軸上,點Q在直線AB上,是否存在以C、D、P、Q為頂點的四邊形是平行四邊形?若存在,直接寫出所有滿足條件的P點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com