【題目】如圖,在邊長為4的正方形ABCD中,P是BC邊上一動點(diǎn)(不含B、C兩點(diǎn)),將△ABP沿直線AP翻折,點(diǎn)B落在點(diǎn)E處;在CD上有一點(diǎn)M,使得將△CMP沿直線MP翻折后,點(diǎn)C落在直線PE上的點(diǎn)F處,直線PE交CD于點(diǎn)N,連接MA,NA.則以下結(jié)論中正確的有( )
①△CMP∽△BPA;
②四邊形AMCB的面積最大值為10;
③當(dāng)P為BC中點(diǎn)時,AE為線段NP的中垂線;
④線段AM的最小值為2;
⑤當(dāng)△ABP≌△ADN時,BP= 4-4.
A. 1個B. 2個C. 4個D. 3個
【答案】D
【解析】
根據(jù)相似三角形的判定和性質(zhì)逐個分析即可. 證AB=CB=DC=AD=4,∠C=∠B=90°,得△CMP∽△BPA,故①正確;當(dāng)x=2時,四邊形AMCB面積最大值為10,故②正確;NE≠EP,故③錯誤;AM的最小值==5,故④錯誤;PB=故⑤正確.
∵∠APB=∠APE,∠MPC=∠MPN,∵∠CPN+∠NPB=180°,∴2∠NPM+2∠APE=180°,∴∠MPN+∠APE=90°,∴∠APM=90°,∵∠CPM+∠APB=90°,∠APB+∠PAB=90°,∴∠CPM=∠PAB,∵四邊形ABCD是正方形,∴AB=CB=DC=AD=4,∠C=∠B=90°,∴△CMP∽△BPA.故①正確,設(shè)PB=x,則CP=4﹣x,∵△CMP∽△BPA,∴,∴CM=x(4﹣x),∴S四邊形AMCB=[4+x(4﹣x)]×4==,∴x=2時,四邊形AMCB面積最大值為10,故②正確,當(dāng)PB=PC=PE=2時,設(shè)ND=NE=y,在Rt△PCN中,解得,∴NE≠EP,故③錯誤,作MG⊥AB于G,∵AM==,∴AG最小時AM最小,∵AG=AB﹣BG=AB﹣CM=4﹣x(4﹣x)=,∴x=1時,AG最小值=3,∴AM的最小值==5,故④錯誤.∵△ABP≌△ADN時,∴∠PAB=∠DAN=22.5°,在AB上取一點(diǎn)K使得AK=PK,設(shè)PB=z,∴∠KPA=∠KAP=22.5°.∵∠PKB=∠KPA+∠KAP=45°,∴∠BPK=∠BKP=45°,∴PB=BK=z,AK=PK=z,∴z+z=4,∴z=,∴PB=故⑤正確.
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,∠ABC=90°,AO是△ABC的角平分線,以O為圓心,OB為半徑作圓交BC于點(diǎn)D,
(1)求證:直線AC是⊙O的切線;
(2)在圖2中,設(shè)AC與⊙O相切于點(diǎn)E,連結(jié)BE,如果AB=4,tan∠CBE=.
①求BE的長;②求EC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.
(1)求梯形ABCD的面積S;
(2)動點(diǎn)P從點(diǎn)B出發(fā),以1cm/s的速度,沿BADC方向,向點(diǎn)C運(yùn)動;動點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度,沿CDA方向,向點(diǎn)A運(yùn)動,過點(diǎn)Q作QE⊥BC于點(diǎn)E.若P、Q兩點(diǎn)同時出發(fā),當(dāng)其中一點(diǎn)到達(dá)目的地時整個運(yùn)動隨之結(jié)束,設(shè)運(yùn)動時間為t秒.問:
①當(dāng)點(diǎn)P在BA上運(yùn)動時,是否存在這樣的t,使得直線PQ將梯形ABCD的周長平分?若存在,請求出t的值;若不存在,請說明理由;
②在運(yùn)動過程中,是否存在這樣的t,使得以P、A、D為頂點(diǎn)的三角形與△CQE相似?若存在,請求出所有符合條件的t的值;若不存在,請說明理由;
③在運(yùn)動過程中,是否存在這樣的t,使得以P、D、Q為頂點(diǎn)的三角形恰好是以DQ為一腰的等腰三角形?若存在,請求出所有符合條件的t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點(diǎn)E,∠ABC的平分線BF交AD于點(diǎn)F,交BC于點(diǎn)D.
(1)求證:BE=EF;
(2)若DE=4,DF=3,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD中,點(diǎn)E是BC上的一個動點(diǎn),EF⊥AE交CD于點(diǎn)F,以AE,EF為邊作矩形AEFG,若AB=4,則點(diǎn)G到AD距離的最大值是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,菱形ABCD中,∠B=60°,動點(diǎn)P以每秒1個單位的速度自點(diǎn)A出發(fā)沿線段AB運(yùn)動到點(diǎn)B,同時動點(diǎn)Q以每秒2個單位的速度自點(diǎn)B出發(fā)沿折線B﹣C﹣D運(yùn)動到點(diǎn)D.圖2是點(diǎn)P、Q運(yùn)動時,△BPQ的面積S隨時間t變化關(guān)系圖象,則a的值是( 。
A.2B.2.5C.3D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司準(zhǔn)備購進(jìn)一批產(chǎn)品進(jìn)行銷售,該產(chǎn)品的進(jìn)貨單價為6元/個.根據(jù)市場調(diào)查,該產(chǎn)品的日銷售量y(個)與銷售單價x(元/個)之間滿足一次函數(shù)關(guān)系.關(guān)于日銷售量y(個)與銷售單價x(元/個)的幾組數(shù)據(jù)如表:
x | 10 | 12 | 14 | 16 |
y | 300 | 240 | 180 | m |
(1)求出y與x之間的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍)及m的值.
(2)按照(1)中的銷售規(guī)律,當(dāng)銷售單價定為17.5元/個時,日銷售量為 個,此時,獲得日銷售利潤是 .
(3)為防范風(fēng)險,該公司將日進(jìn)貨成本控制在900(含900元)以內(nèi),按照(1)中的銷售規(guī)律,要使日銷售利潤最大,則銷售單價應(yīng)定為多少?并求出此時的最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y1=ax2+b經(jīng)過C(﹣2,4),D(﹣4,4)兩點(diǎn).
(1)求拋物線y1的函數(shù)表達(dá)式;
(2)將拋物線y1沿x軸翻折,再向右平移,得到拋物線y2,與y2軸交于點(diǎn)F,點(diǎn)E為拋物線2上一點(diǎn),要使以CD為邊,C、D、E、F四點(diǎn)為頂點(diǎn)的四邊形為平行四邊形,求所有滿足條件的拋物線y2的函表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A(-2,m)繞坐標(biāo)原點(diǎn)O順時針旋轉(zhuǎn)90°后,恰好落在圖中⊙P中的陰影區(qū)域(包括邊界)內(nèi),⊙P的半徑為1,點(diǎn)P的坐標(biāo)為(3,2),則m的取值范圍是______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com