【題目】如圖,在矩形ABCD中,點F在邊BC上,且AF=AD,過點DDEAF,垂足為點E

1)求證:DE=AB

2)以A為圓心,AB長為半徑作圓弧交AF于點G,若BF=FC=1,求扇形ABG的面積.(結(jié)果保留π)

【答案】(1)證明見解析;(2)

【解析】

試題分析:(1)根據(jù)矩形的性質(zhì)得出∠B=90°,AD=BC,AD∥BC,求出∠DAE=∠AFB,∠AED=90°=∠B,根據(jù)AAS推出△ABF≌△DEA即可;

(2)根據(jù)勾股定理求出AB,解直角三角形求出∠BAF,根據(jù)全等三角形的性質(zhì)得出DE=DG=AB=,∠GDE=∠BAF=30°,根據(jù)扇形的面積公式求得求出即可.

試題解析:(1)∵四邊形ABCD是矩形,∴∠B=90°,AD=BC,AD∥BC,∴∠DAE=∠AFB,∵DE⊥AF,∴∠AED=90°=∠B,在△ABF和△DEA中,∵∠AFB=DAE,B=DEA,AF=AD,∴△ABF≌△DEA(AAS),∴DE=AB;

(2)∵BC=AD,AD=AF,∴BC=AF,∵BF=1,∠ABF=90°,∴由勾股定理得:AB==,∴∠BAF=30°,∵△ABF≌△DEA,∴∠GDE=∠BAF=30°,DE=AB=DG=,∴扇形ABG的面積==

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=﹣(x+h2,當x<﹣3時,yx的增大而增大,當x>﹣3時,yx的增大而減小,當x0時,y的值為(

A. 1B. 9C. 1D. 9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,連接BD,點OBD的中點,若M、N是邊AD上的兩點,連接MO、NO,并分別延長交邊BC于兩點M′、N′,則圖中的全等三角形共有(

A2 B3 C4 D5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在正方形ABCD中,點EF分別是邊BC,AB上的點,且CE=BF.連接DE,過點EEGDE,使EG=DE,連接FG,FC

1)請判斷:FGCE的數(shù)量關(guān)系是 ,位置關(guān)系是 ;

2)如圖2,若點EF分別是邊CB,BA延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請作出判斷并給予證明;

3)如圖3,若點E,F分別是邊BC,AB延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請直接寫出你的判斷

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】a是一個長為2m,寬為2n的長方形,沿圖a中虛線用剪刀把它均分成四塊小長方形,然后按圖b的形狀拼成一個正方形.
(1)請用兩種不同的方法求圖b中陰影部分的面積:
方法1: ____ (只列式,不化簡)
方法2: ______ (只列式,不化簡)
(2)觀察圖b,寫出代數(shù)式(m+n2,(m-n2mn之間的等量關(guān)系: ______ ;
(3)根據(jù)(2)題中的等量關(guān)系,解決如下問題:若a+b=7,ab=5,

則(a-b2= ______ .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若方程 x2+px+30 的一個根是﹣3,則它的另一個根是( 。

A. 1B. 0C. 1D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次數(shù)學測試后,某班40名學生的成績被分為5組,第1~4組的頻數(shù)分別為12、10、6、8,則第5組的頻率是(
A.0.1
B.0.2
C.0.3
D.0.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知(x+a)(x+b)=x2﹣13x+36,則a+b=( 。
A.-5
B.5
C.-13
D.﹣13或5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)圖象經(jīng)過A(-4,-9)和B(3, 5)兩點,與x軸的交于點C,與y軸的交于點D,

(1)求該一次函數(shù)解析式;

(2)點C坐標為___________ ,點D坐標為___________ ;

(3)求該一次函數(shù)圖象和坐標軸圍成的圖形面積。

查看答案和解析>>

同步練習冊答案