【題目】如圖,△ABC中,AD是BC邊上的中線(xiàn),點(diǎn)E在AB邊上,且=,CE交AD于點(diǎn)F,點(diǎn)G是BE中點(diǎn),若△ABC的面積為112,則△AEF的面積為_______.
【答案】2
【解析】
由三角形的中線(xiàn)性質(zhì)得出△ACD的面積=△ABC的面積=56,證出DG是△BCE的中位線(xiàn),得出DG∥CE,DG=CE,證出△AEF∽△AGD,得出===,求出△ACF的面積=△AD的面積=14,證出=,即可得出答案.
解:∵AD是BC邊上的中線(xiàn),△ABC的面積為112,
∴△ACD的面積=△ABC的面積=56,
∵點(diǎn)G是BE中點(diǎn),
∴BG=EG,DG是△BCE的中位線(xiàn),
∴DG∥CE,DG=CE,
∴△AEF∽△AGD,
∴==,
∵=,
∴=,
∴===,
∴△ACF的面積=△ACD的面積=14,
∵=,DG=CE,
∴=,
∴=,
∴△AEF的面積=△ACF的面積=×14=2;
故答案為:2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A、P、B、C是⊙O上的四個(gè)點(diǎn),∠APC=∠CPB=60°.
(1)求證:PA+PB=PC;
(2)若BC=,點(diǎn)P是劣弧AB上一動(dòng)點(diǎn)(異于A、B),PA、PB是關(guān)于x的一元二次方程x2﹣mx+n=0的兩根,求m的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某初中對(duì) 600 名畢業(yè)生中考體育測(cè)試坐位體前屈成績(jī)進(jìn)行整理,繪制成 如下不完整的統(tǒng)計(jì)圖:
根據(jù)統(tǒng)計(jì)圖,回答下列問(wèn)題。
(1)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)扇形統(tǒng)計(jì)圖中,b= ,得 8 分所對(duì)應(yīng)扇形的圓心角度數(shù)為 ;
(3)在本次調(diào)查的學(xué)生中,隨機(jī)抽取 1 名男生,他的成績(jī)不低于 9 分的概率為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列方程中,沒(méi)有實(shí)數(shù)根的是( 。
A.2x+3=0B.x2﹣1=0C.D.x2+x+1=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小敏的爸爸是一家水果店的經(jīng)理.一天,他去水果批發(fā)市場(chǎng),用100元購(gòu)進(jìn)甲種水果,用100元購(gòu)進(jìn)乙種水果,已知乙種水果比甲種水果多10千克,乙種水果的批發(fā)價(jià)比甲種水果的批發(fā)價(jià)低0.5元.
(1)求甲、乙兩種水果各購(gòu)進(jìn)了多少千克?
(2)如果當(dāng)天甲、乙兩種水果都按2.80元出售,乙種水果很快售完,而甲種水果先售出,剩余的按售價(jià)打5折售完.請(qǐng)你通過(guò)計(jì)算,說(shuō)明這一天的水果買(mǎi)賣(mài)是否賺錢(qián)?如果賺錢(qián),賺了多少元?如果不賺錢(qián),那么賠了多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD對(duì)角線(xiàn)交于點(diǎn)O,BE∥AC,AE∥BD,EO與AB交于點(diǎn)F.
(1)求證:EO=DC;
(2)若菱形ABCD的邊長(zhǎng)為10,∠EBA=60°,求:菱形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠POQ=60°,點(diǎn)A、B分別在射線(xiàn)OQ、OP上,且OA=2,OB=4,∠POQ的平分線(xiàn)交AB于C,一動(dòng)點(diǎn)N從O點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿射線(xiàn)OP向點(diǎn)B作勻速運(yùn)動(dòng),MN⊥OB交射線(xiàn)OQ于點(diǎn)M.設(shè)點(diǎn)N運(yùn)動(dòng)的時(shí)間為t(0<t<2)秒.
(1)求證:△ONM∽△OAB;
(2)當(dāng)MN=CM時(shí),求t的值;
(3)設(shè)△MNC與△OAB重疊部分的面積為S.請(qǐng)求出S關(guān)于t的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,∠BAD=120°,CE⊥AD,且CE=BC,連接BE交對(duì)角線(xiàn)AC于點(diǎn)F,則∠EFC=_____°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD內(nèi)接于圓O,連結(jié)BD,∠BAD=105°,∠DBC=75°.
(1)求證:BD=CD;
(2)若圓O的半徑為3,求的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com