【題目】已知:△ABC是等邊三角形.

(1)如圖,點(diǎn)DAB邊上,點(diǎn)EAC邊上,BDCE,BECD交于點(diǎn)F試判斷BFCF的數(shù)量關(guān)系,并加以證明;

(2)點(diǎn)DAB邊上的一個(gè)動(dòng)點(diǎn),點(diǎn)EAC邊上的一個(gè)動(dòng)點(diǎn),且BDCE,BECD交于點(diǎn)F.若△BFD是等腰三角形,求∠FBD的度數(shù).

【答案】(1)BF=CF;理由見(jiàn)解析;(2)40°20°

【解析】試題分析:1)由等邊三角形的性質(zhì)得出∠ABC=ACB=60°,由SAS證明BCD≌△CBE,得出∠BCD=CBE,由等角對(duì)等邊即可得出BF=CF

2)設(shè)∠BCD=CBE=x,則∠DBF=60°-x,分三種情況:①若FD=FB,則∠FBD=FDB>A,證出∠FBD<60°,得出FD=FB的情況不存在;②若DB=DF,則∠FBD=BFD=2x,得出方程60°-x=2x,解方程即可得出結(jié)果;③若BD=BF,則∠BDF=BFD=2x,由三角形內(nèi)角和定理得出方程,解方程即可得出結(jié)果.

試題解析:(1BF=CF;理由如下:

∵△ABC是等邊三角形,

∴∠ABC=ACB=60°

BCDCBE中,

∴△BCD≌△CBESAS),

∴∠BCD=CBE,

BF=CF

2)由(1)得:∠BCD=CBE,ACB=60°,

設(shè)∠BCD=CBE=x

∴∠DBF=60°﹣x,

BFD是等腰三角形,分三種情況:

①若FD=FB,則∠FBD=FDBA,

∴∠FBD=FDB60°,

但∠FBDABC,

∴∠FBD60°

FD=FB的情況不存在;

②若DB=DF,則∠FBD=BFD=2x,

60°﹣x=2x,

解得:x=20°

∴∠FBD=40°;

③若BD=BF,如圖所示:

則∠BDF=BFD=2x,

BDF中,∠DBF+BDF+BFD=180°,

60°﹣x+2x+2x=180°

解得:x=40°,

∴∠FBD=20°

綜上所述:∠FBD的度數(shù)是40°20°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=﹣x2+4x+5與x軸交于點(diǎn)A,點(diǎn)B,與y軸交于點(diǎn)C,若D為AB的中點(diǎn),則CD的長(zhǎng)為( )
A.
B.
C.
D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(3,2),B(4,3),C(1,1)

(1)在圖中作出ABC關(guān)于y軸對(duì)稱的A1B1C1;寫(xiě)出點(diǎn)A1,B1,C1的坐標(biāo)(直接寫(xiě)答案):A1 ;B1 ;C1 ;

(2)A1B1C1的面積為 ;

(3)在y軸上畫(huà)出點(diǎn)P,使PB+PC最小

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在我們認(rèn)識(shí)的多邊形中有很多軸對(duì)稱圖形.有些多邊形,邊數(shù)不同對(duì)稱軸的條數(shù)也不同;有些多邊形邊數(shù)相同但卻有不同數(shù)目的對(duì)稱軸.回答下列問(wèn)題

(1)非等邊的等腰三角形有________條對(duì)稱軸,非正方形的長(zhǎng)方形有________條對(duì)稱軸等邊三角形有___________條對(duì)稱軸;

(2)觀察下列一組凸多邊形實(shí)線畫(huà)出),它們的共同點(diǎn)是只有1條對(duì)稱軸,其中圖1-2和圖1-3都可以看作由圖1-1修改得到的,仿照類(lèi)似的修改方式請(qǐng)你在圖1-4和圖1-5,分別修改圖1-2和圖1-3,得到一個(gè)只有1條對(duì)稱軸的凸五邊形,并用實(shí)線畫(huà)出所得的凸五邊形;

(3)小明希望構(gòu)造出一個(gè)恰好有2條對(duì)稱軸的凸六邊形于是他選擇修改長(zhǎng)方形,2中是他沒(méi)有完成的圖形請(qǐng)用實(shí)線幫他補(bǔ)完整個(gè)圖形

(4)請(qǐng)你畫(huà)一個(gè)恰好有3條對(duì)稱軸的凸六邊形,并用虛線標(biāo)出對(duì)稱軸

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠180°,∠2100°,∠C=∠D

1)判斷ACDF的位置關(guān)系,并說(shuō)明理由;

2)若∠C比∠A20°,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,港口A在觀測(cè)站O的正東方向,OA=6km,某船從港口A出發(fā),沿北偏東15°方向航行一段距離后到達(dá)B,此時(shí)從觀測(cè)點(diǎn)O處測(cè)得該船位于北偏東60°的方向,則該船航行的距離為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB表示路燈,當(dāng)身高為1.6米的小名站在離路燈1.6的D處時(shí),他測(cè)得自己在路燈下的影長(zhǎng)DE與身高CD相等,當(dāng)小明繼續(xù)沿直線BD往前走到E點(diǎn)時(shí),畫(huà)出此時(shí)小明的影子,并計(jì)算此時(shí)小明的影長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)C,OB在同一條直線上,∠AOB=90°,∠AOE=DOB,則下列結(jié)論:①∠EOD=90°;②∠COE=AOD;③∠AOE+DOC=180;④互余的角有4對(duì).其中正確的有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠B=∠C90°EBC的中點(diǎn),DE平分∠ADC,求證:

1AE是∠DAB的平分線;

2AEDE

查看答案和解析>>

同步練習(xí)冊(cè)答案