【題目】我國魏晉時期的數(shù)學家劉徽創(chuàng)立了“割圓術(shù)”,認為圓內(nèi)接正多邊形邊數(shù)無限增加時,周長就越接近圓周長,由此求得了圓周率π的近似值,設(shè)半徑為r的圓內(nèi)接正n邊形的周長為L,圓的直徑為d,如圖所示,當n=6時,π≈ = =3,那么當n=12時,π≈ = . (結(jié)果精確到0.01,參考數(shù)據(jù):sin15°=cos75°≈0.259)
【答案】3.10
【解析】解:如圖,圓的內(nèi)接正十二邊形被半徑分成如圖所示的十二個等腰三角形,其頂角為30°,即∠O=30°,∠ABO=∠A=75°, 作BC⊥AO于點C,則∠ABC=15°,
∵AO=BO=r,
∴BC= r,OC= r,
∴AC=(1﹣ )r,
∵Rt△ABC中,cosA= ,
即0.259= ,
∴AB≈0.517r,
∴L=12×0.517r=6.207r,
又∵d=2r,
∴π≈ = ≈3.10,
故答案為:3.10
圓的內(nèi)接正十二邊形被半徑分成頂角為30°的十二個等腰三角形,作輔助線構(gòu)造直角三角形,根據(jù)中心角的度數(shù)以及半徑的大小,求得L=6.207r,d=2r,進而得到π≈ = ≈3.10.
科目:初中數(shù)學 來源: 題型:
【題目】下列命題是真命題的是( )
A.若一組數(shù)據(jù)是1,2,3,4,5,則它的方差是3
B.若分式方程 有增根,則它的增根是1
C.對角線互相垂直的四邊形,順次連接它的四邊中點所得四邊形是矩形
D.若一個角的兩邊分別與另一個角的兩邊平行,則這兩個角相等
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A,B兩地相距60km,甲、乙兩人從兩地出發(fā)相向而行,甲先出發(fā),圖中l(wèi)1 , l2表示兩人離A地的距離s(km)與時間t(h)的關(guān)系,請結(jié)合圖象解答下列問題:
(1)表示乙離A地的距離與時間關(guān)系的圖象是(填l1或l2); 甲的速度是km/h,乙的速度是km/h;
(2)甲出發(fā)多少小時兩人恰好相距5km?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為大力弘揚“奉獻、友愛、互助、進步”的志愿服務精神,傳播“奉獻他人、提升自我”的志愿服務理念,東營市某中學利用周末時間開展了“助老助殘、社區(qū)服務、生態(tài)環(huán)保、網(wǎng)絡(luò)文明”四個志愿服務活動(每人只參加一個活動),九年級某班全班同學都參加了志愿服務,班長為了解志愿服務的情況,收集整理數(shù)據(jù)后,繪制以下不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)求該班的人數(shù);
(2)請把折線統(tǒng)計圖補充完整;
(3)求扇形統(tǒng)計圖中,網(wǎng)絡(luò)文明部分對應的圓心角的度數(shù);
(4)小明和小麗參加了志愿服務活動,請用樹狀圖或列表法求出他們參加同一服務活動的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】直線y=kx+b與反比例函數(shù)y= (x>0)的圖象分別交于點 A(m,3)和點B(6,n),與坐標軸分別交于點C和點D.
(1)求直線AB的解析式;
(2)若點P是x軸上一動點,當△COD與△ADP相似時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了加強學生課外閱讀,開闊視野,某校開展了“書香校園,從我做起”的主題活動,學校隨機抽取了部分學生,對他們一周的課外閱讀時間進行調(diào)查,繪制出頻數(shù)分布表和頻數(shù)分布直方圖的一部分如下:
課外閱讀時間(單位:小時) | 頻數(shù)(人數(shù)) | 頻率 |
0<t≤2 | 2 | 0.04 |
2<t≤4 | 3 | 0.06 |
4<t≤6 | 15 | 0.30 |
6<t≤8 | a | 0.50 |
t>8 | 5 | b |
請根據(jù)圖表信息回答下列問題:
(1)頻數(shù)分布表中的a= , b=;
(2)將頻數(shù)分布直方圖補充完整;
(3)學校將每周課外閱讀時間在8小時以上的學生評為“閱讀之星”,請你估計該校2000名學生中評為“閱讀之星”的有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在梯形ABCD中,AB∥CD,E是BC的中點,EF⊥AD于點F,AD=4,EF=5,則梯形ABCD的面積是( )
A.40
B.30
C.20
D.10
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,按要求畫出△A1B1C1和△A2B2C2;
①把△ABC先向右平移4個單位,再向上平移1個單位,得到△A1B1C1;
②以圖中的O為位似中心,將△A1B1C1作位似變換且放大到原來的兩倍,得到△A2B2C2 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com