【題目】在四邊形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,點H為垂足.設AB=x,AD=y,則y關于x的函數(shù)關系用圖象大致可以表示為( )

A.
B.
C.
D.

【答案】D
【解析】解:

∵DH垂直平分AC,
∴DA=DC,AH=HC=2,
∴∠DAC=∠DCH,
∵CD∥AB,
∴∠DCA=∠BAC,
∴∠DAN=∠BAC,
∵∠DHA=∠B=90°,
∴△DAH∽△CAB,
= ,

∴y= ,
∵AB<AC,
∴x<4,
∴圖象是D.
故選D.
由△DAH∽△CAB,得 = ,求出y與x關系,再確定x的取值范圍即可解決問題.本題科學相似三角形的判定和性質(zhì)、相等垂直平分線性質(zhì)、反比例函數(shù)等知識,解題的關鍵是正確尋找相似三角形,構(gòu)建函數(shù)關系,注意自變量的取值范圍的確定,屬于中考?碱}型.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以扇形OAB的頂點O為原點,半徑OB所在的直線為x軸,建立平面直角坐標系,點B的坐標為(2,0),若拋物線y= x2+k與扇形OAB的邊界總有兩個公共點,則實數(shù)k的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,BD⊥AC,AB=6, ,∠A=30°
(1)求AD和BC;
(2)求sin∠C.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】順次連接四邊形各邊中點,所得的圖形是__________。順次連接對角線______________的四邊形的各邊中點所得的圖形是矩形。順次連接對角線_________的四邊形的各邊中點所得的四邊形是菱形。順次連接對角線_________的四邊形的各邊中點所得的四邊形是正方形。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀后回答問題:

計算(-)÷(-15)×(-)

解:原式=-÷[(-15)×(-)] ①

=-÷1 ②

=-

()上述的解法是否正確?答:_________________________

若有錯誤,在哪一步?答:_________________________(填代號)

錯誤的原因是:___________________________________

(2)這個計算題的正確答案應該是:______________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校七年級四個班的學生在植樹節(jié)這天共義務植樹(6a-3b)棵,一班植樹a棵,二班植樹的棵數(shù)比一班的兩倍少b棵,三班植樹的棵數(shù)比二班的一半多1棵

(1)求三班的植樹棵數(shù)(用含a,b的式子表示);

(2)求四班的植樹棵數(shù)(用含a,b的式子表示);

(3)若四個班共植樹54棵,求二班比三班多植樹多少棵?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1所示矩形ABCD中,BC=x,CD=y,yx滿足的反比例函數(shù)關系如圖2所示,等腰直角三角形AEF的斜邊EFC點,MEF的中點,則下列結(jié)論正確的是

A. x=3時,ECEM B. y=9時,ECEM

C. x增大時,EC·CF的值增大。 D. y增大時,BE·DF的值不變。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,對角線AC,BD相交于點O,DH⊥AB于點H,連接OH,求證:∠DHO=∠DCO.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長相同的小正方形網(wǎng)格中,點A、B、C、D都在這些小正方形的頂點上,AB,CD相交于點P,則 的值= , tan∠APD的值=

查看答案和解析>>

同步練習冊答案