【題目】如圖,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,則PD的長為_____.
【答案】2
【解析】
過P作PE垂直與OB,由∠AOP=∠BOP,PD垂直于OA,利用角平分線定理得到PE=PD,由PC與OA平行,根據(jù)兩直線平行得到一對內(nèi)錯角相等,又OP為角平分線得到一對角相等,等量代換可得∠COP=∠CPO,又∠ECP為三角形COP的外角,利用三角形外角的性質(zhì)求出∠ECP=30°,在直角三角形ECP中,由30°角所對的直角邊等于斜邊的一半,由斜邊PC的長求出PE的長,即為PD的長.
過P作PE⊥OB,交OB與點E,
∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,
∴PD=PE,
∵PC∥OA,
∴∠CPO=∠POD,
又∠AOP=∠BOP=15°,
∴∠CPO=∠BOP=15°,
又∠ECP為△OCP的外角,
∴∠ECP=∠COP+∠CPO=30°,
在直角三角形CEP中,∠ECP=30°,PC=4,
∴PE=PC=2,
則PD=PE=2.
故答案為:2.
科目:初中數(shù)學 來源: 題型:
【題目】已知P(x,y)為不等式組 表示的平面區(qū)域M內(nèi)任意一點,若目標函數(shù)z=5x+3y的最大值等于平面區(qū)域M的面積,則m= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知A、B分別在射線CM、CN(不含端點C)上運動,∠MCN= π,在△ABC中,角A、B、C所對的邊分別是a、b、c.
(Ⅰ)若a、b、c依次成等差數(shù)列,且公差為2.求c的值;
(Ⅱ)若c= ,∠ABC=θ,試用θ表示△ABC的周長,并求周長的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】據(jù)某市地產(chǎn)數(shù)據(jù)研究院的數(shù)據(jù)顯示,2016年該市新建住宅銷售均價走勢如圖所示,為抑制房價過快上漲,政府從8月份采取宏觀調(diào)控措施,10月份開始房價得到很好的抑制.
(Ⅰ)地產(chǎn)數(shù)據(jù)研究院研究發(fā)現(xiàn),3月至7月的各月均價y(萬元/平方米)與月份x之間具有較強的線性相關關系,試建立y關于x的回歸方程(系數(shù)精確到0.01),政府若不調(diào)控,依次相關關系預測第12月份該市新建住宅銷售均價;
(Ⅱ)地產(chǎn)數(shù)據(jù)研究院在2016年的12個月份中,隨機抽取三個月份的數(shù)據(jù)作樣本分析,若關注所抽三個月份的所屬季度,記不同季度的個數(shù)為X,求X的分布列和數(shù)學期望.
參考數(shù)據(jù): =25, =5.36, =0.64
回歸方程 = x+ 中斜率和截距的最小二乘估計公式分別為:
= , = ﹣ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】執(zhí)行右面的程序框圖,如果輸出的a值大于2017,那么判斷框內(nèi)的條件為( )
A.k<9?
B.k≥9?
C.k<10?
D.k≥11?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某同學在研究性學習中,收集到某制藥廠今年前5個月甲膠囊生產(chǎn)產(chǎn)量(單位:萬盒)的數(shù)據(jù)如下表所示:
月份x | 1 | 2 | 3 | 4 | 5 |
y(萬盒) | 4 | 4 | 5 | 6 | 6 |
(1)該同學為了求出y關于x的線性回歸方程 = + ,根據(jù)表中數(shù)據(jù)已經(jīng)正確計算出 =0.6,試求出 的值,并估計該廠6月份生產(chǎn)的甲膠囊產(chǎn)量數(shù);
(2)若某藥店現(xiàn)有該制藥廠今年二月份生產(chǎn)的甲膠囊4盒和三月份生產(chǎn)的甲膠囊5盒,小紅同學從中隨機購買了3盒甲膠囊,后經(jīng)了解發(fā)現(xiàn)該制藥廠今年二月份生產(chǎn)的所有甲膠囊均存在質(zhì)量問題.記小紅同學所購買的3盒甲膠囊中存在質(zhì)量問題的盒數(shù)為ξ,求ξ的分布列和數(shù)學期望.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖的正方形網(wǎng)格中,點O在格點上,⊙O的半徑與小正方形的邊長相等,請利用無刻度的直尺完成作圖,在圖(1)中畫出一個45°的圓周角,在圖(2)中畫出一個22.5°的圓周角.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com