【題目】如圖,在中,,平分交于點(diǎn),是上一點(diǎn),經(jīng)過(guò),兩點(diǎn)的交于點(diǎn),連接,作的平分線交于點(diǎn),連接.
(1)求證:是的切線;
(2)若,,求線段的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)AC=6.4
【解析】
(1)連接OE,根據(jù)同圓的半徑相等和角平分線可得:OE∥AC,則∠BEO=∠C=90°,解決問(wèn)題;
(2)過(guò)A作AH⊥EF于H,根據(jù)三角函數(shù)先計(jì)算,證明△AEH是等腰直角三角形,則AE=AH=8,證明△AED∽△ACE,得到即可解決問(wèn)題.
證明:(1)連接OE,
∵OE=OA,
∴∠OEA=∠OAE,
∵AE平分∠BAC,
∴∠OAE=∠CAE,
∴∠CAE=∠OEA,
∴OE∥AC,
∴∠BEO=∠C=90°,
∴BC是⊙O的切線;
(2)過(guò)A作AH⊥EF于H,
中,,
∵,
∴,
∵AD是⊙O的直徑,
∴∠AED=90°,
∵EF平分∠AED,
∴∠AEF=45°,
∴△AEH是等腰直角三角形,
∴,
∵,
∴,
∵,,
∴,
∴,
∴,
∴AC=6.4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線經(jīng)過(guò)點(diǎn),與軸交于點(diǎn),點(diǎn)是該拋物線上一點(diǎn),且在第四象限內(nèi),連接.
(1)求拋物線的函數(shù)解析式,并寫(xiě)出對(duì)稱軸;
(2)當(dāng)時(shí),求點(diǎn)的坐標(biāo);
(3)在(2)的條件下,如果點(diǎn)是軸上一點(diǎn),點(diǎn)是拋物線上一點(diǎn),當(dāng)以點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,BC=,E為CD邊上一點(diǎn),將△BCE沿BE折疊,點(diǎn)C的對(duì)應(yīng)點(diǎn)為點(diǎn)F,連接AF,若,則CE=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】.如圖,矩形ABCD中,O為AC中點(diǎn),過(guò)點(diǎn)O的直線分別與AB、CD交于點(diǎn)E、F,連結(jié)BF交AC于點(diǎn)M,連結(jié)DE、BO.若∠COB=60°,FO=FC,則下列結(jié)論:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正確結(jié)論的個(gè)數(shù)是( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)圖象如圖,下列結(jié)論:①;②;③當(dāng)時(shí),;④;⑤若,且,.其中正確的結(jié)論的個(gè)數(shù)有( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,數(shù)學(xué)興趣小組的小穎想測(cè)量教學(xué)樓前的一棵樹(shù)的樹(shù)高,下午課外活動(dòng)時(shí)她測(cè)得一根長(zhǎng)為1m的竹竿的影長(zhǎng)是0.8m,但當(dāng)她馬上測(cè)量樹(shù)高時(shí),發(fā)現(xiàn)樹(shù)的影子不全落在地面上,有一部分影子落在教學(xué)樓的墻壁上(如圖),他先測(cè)得留在墻壁上的影高為1.2m,又測(cè)得地面的影長(zhǎng)為2.6m,請(qǐng)你幫她算一下,樹(shù)高是( )
A、3.25m B、4.25m C、4.45m D、4.75m
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,CG⊥BA交BA的延長(zhǎng)線于點(diǎn)G.一等腰直角三角尺按如圖1所示的位置擺放,該三角尺的直角頂點(diǎn)為F,一條直角邊與AC邊在一條直線上,另一條直角邊恰好經(jīng)過(guò)點(diǎn)B.
(1)在圖1中請(qǐng)你通過(guò)觀察、測(cè)量BF與CG的長(zhǎng)度,猜想并寫(xiě)出BF與CG滿足的數(shù)量關(guān)系,然后證明你的猜想;
(2)當(dāng)三角尺沿AC方向平移到圖2所示的位置時(shí),一條直角邊仍與AC邊在同一直線上,另一條直角邊交BC邊于點(diǎn)D,過(guò)點(diǎn)D作DE⊥BA于點(diǎn)E.此時(shí)請(qǐng)你通過(guò)觀察、測(cè)量DE、DF與CG 的長(zhǎng)度,猜想并寫(xiě)出DE+DF與CG之間滿足的數(shù)量關(guān)系,然后證明你的猜想;
(3)當(dāng)三角尺在(2)的基礎(chǔ)上沿AC方向繼續(xù)平移到圖3所示的位置(點(diǎn)F在線段AC上,且點(diǎn)F與點(diǎn)C不重合)時(shí),(2)中的猜想是否仍然成立?(不用說(shuō)明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校開(kāi)展了“互助、平等、感恩、和諧、進(jìn)取”主題班會(huì)活動(dòng),活動(dòng)后,就活動(dòng)的個(gè)主題進(jìn)行了抽樣調(diào)查(每位同學(xué)只選最關(guān)注的一個(gè)),根據(jù)調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計(jì)圖.根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)這次調(diào)查的學(xué)生共有多少名?
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整,并在扇形統(tǒng)計(jì)圖中計(jì)算出“進(jìn)取”所對(duì)應(yīng)的圓心角的度數(shù).
(3)如果要在這個(gè)主題中任選兩個(gè)進(jìn)行調(diào)查,根據(jù)(2)中調(diào)查結(jié)果,用樹(shù)狀圖或列表法,求恰好選到學(xué)生關(guān)注最多的兩個(gè)主題的概率(將互助、平等、感恩、和諧、進(jìn)取依次記為A、B、C、D、E).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,和是有公共頂點(diǎn)的直角三角形,,點(diǎn)為射線,的交點(diǎn).
(1)如圖1,若和是等腰三角形,求證:;
(2)如圖2,若,問(wèn):(1)中的結(jié)論是否成立?請(qǐng)說(shuō)明理.
(3)在(1)的條件下,,,若把繞點(diǎn)旋轉(zhuǎn),當(dāng)時(shí),請(qǐng)直接寫(xiě)出的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com