【題目】如圖,AB是半圓O的直徑,C、D是半圓O上的兩點,且OD∥BC,OD與AC交于點E.
(1)若∠B=64°,求∠CAD的度數(shù);
(2)若AB=10,DE=2,求AC的長.
【答案】(1)32°;(2)8.
【解析】
(1)根據(jù)直徑所對的圓周角是直角求出∠BAC的度數(shù),根據(jù)平行線的性質(zhì)求出∠AOD的度數(shù),根據(jù)等腰三角形的性質(zhì)得到答案;
(2)根據(jù)三角形中位線定理求出BC的長,根據(jù)勾股定理求出答案.
∵AB是半圓O的直徑,
∴∠C=90°,又∠B=64°,
∴∠BAC=26°,
∵OD∥BC,
∴∠AOD=∠B=64°,又OD=OA,
∴∠OAD=58°,
∴∠CAD=∠OAD-∠BAC=32°
(2)∵AB=10,
∴OD=5,又DE=2,
∴OE=3,
∵OD∥BC,OA=OB,
∴BC=2OE=6,
∴AC=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有長為24m的籬笆,現(xiàn)一面利用墻(墻的最大可用長度a為10m)圍成中間隔有一道籬笆的長方形花圃,設(shè)花圃的寬AB為xm,面積為Sm2.
(1)要圍成面積為45m2的花圃,AB的長是多少米?
(2)求AB的長是多少時花圃的面積最大?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某農(nóng)場擬建三間矩形牛飼養(yǎng)室,飼養(yǎng)室的一面全部靠現(xiàn)有墻(墻長為40m),飼養(yǎng)室之間用一道用建筑材料做的墻隔開(如圖).已知計劃中的建筑材料可建圍墻的總長為60m,設(shè)三間飼養(yǎng)室合計長x(m),總占地面積為y(m2).
(1)求y關(guān)于x的函數(shù)表達式和自變量的取值范圍.
(2)x為何值時,三間飼養(yǎng)室占地總面積最大?最大為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AC是⊙O的直徑,弦BD⊥AO于E,連接BC,過點O作OF⊥BC于F,若BD=16cm,AE=4cm.
(1)求⊙O的半徑;
(2)求OF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,矩形ABCD,AB=6cm,AD=8cm,點O從點B出發(fā),以1cm/s的速度向點C運動,設(shè)O點運動時間為t(單位:s)(0<t<4),以點O為圓心,OB為半徑作半圓⊙O交BC 于點M,過點A作⊙O的切線交BC于點N,切點為P.
(1)如圖2,當點N與點C重合時,求t;
(2)如圖3,連接AO,作OQAO交AN于點Q,連接QM,求證:QM是⊙O的切線;
(3)如圖4,連接CP,在點O整個運動過程中,求CP的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在圖的方格紙中,△OAB的頂點坐標分別為O(0,0)、A(-2,-1)、B(-1,-3),△O1A1B1與△OAB是關(guān)于點P為位似中心的位似圖形.
(1)在圖中標出位似中心P的位置,并寫出點P的坐標;
(2)以原點O為位似中心,在位似中心的同側(cè)畫出△OAB的一個位似△OA2B2,使它與△OAB的相似比為2:1.并寫出點B的對應(yīng)點B2的坐標;
(3)判斷△OA2B2能否看作是由△O1A1B1經(jīng)過某種變換后得到的圖形,若是,請指出是怎樣變換得到的(直接寫答案).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,AC=BC,CD為AB邊上的中線.在Rt△AEF中,∠AEF=90°,AE=EF,AF<AC.連接BF,M,N分別為線段AF,BF的中點,連接MN.
(1)如圖1,點F在△ABC內(nèi),求證:CD=MN;
(2)如圖2,點F在△ABC外,依題意補全圖2,連接CN,EN,判斷CN與EN的數(shù)量關(guān)系與位置關(guān)系,并加以證明;
(3)將圖1中的△AEF繞點A旋轉(zhuǎn),若AC=a,AF=b(b<a),直接寫出EN的最大值與最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠C=∠CBD=90°,DE⊥AB于點E.
(1)求證:△DBE∽△BAC.
(2)若BC=3,DB=2,CA=1,求DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com