【題目】在矩形ABCD中,AB=1,AD=,AF平分∠DAB,過C點作CE⊥BD于E,延長AF,EC交于點H,下列結(jié)論中:
①AF=FH;②BO=BF;③CA=CH;④BE=3ED.其中一定成立的是________.(把所有正確結(jié)論的序號都填在橫線上)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是矩形紙片,AB=2.對折矩形紙片ABCD,使AD與BC重合,折痕為EF;展平后再過點B折疊矩形紙片,使點A落在EF上的點N,折痕BM與EF相交于點Q再次展平,連接BN,MN,延長MN交BC于點G.有如下結(jié)論:①∠ABN= 60°;②AM=1;③;④△BMG是等邊三角形;⑤P為線段BM上一動點,H是BN的中點,則PN+PH的最小值是.其中正確結(jié)論的序號是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:在ABCD中,E、F分別是AD、BC邊的中點,G、H是對角線BD上的兩點,且BG=DH,則下列結(jié)論中不正確的是( )
A. GF⊥FHB. GF=EH
C. EF與AC互相平分D. EG=FH
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將四張邊長各不相同的正方形紙片按如圖方式放入矩形ABCD內(nèi)(相鄰紙片之間互不重疊也無縫隙),未被四張正方形紙片覆蓋的部分用陰影表示,設(shè)右上角與左下角陰影部分的周長的差為l.若知道l的值,則不需要測量就能知道周長的正方形的標(biāo)號為( )
A.①B.②C.③D.④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是正方形ABCD的對角線BD上一點,PE⊥BC于點E,PF⊥CD于點F,連接EF.給出下列五個結(jié)論:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=EC.其中正確結(jié)論的序號是( )
A. ①②③④B. ①②④⑤C. ②③④⑤D. ①③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解某水庫養(yǎng)殖魚的有關(guān)情況,從該水庫多個不同位置捕撈出200條魚,稱得每條魚的質(zhì)量(單位:千克),并將所得數(shù)據(jù)分組,繪制了直方圖
(1)根據(jù)直方圖提供的信息,這組數(shù)據(jù)的中位數(shù)落在________范圍內(nèi).
(2)估計數(shù)據(jù)落在1.00~1.15中的頻率是________.
(3)將上面捕撈的200條魚分別作一記號后再放回水庫.幾天后再從水庫的多處不同的位置捕撈150條魚,其中帶有記號的魚有10條,請根據(jù)這一情況估算該水庫中魚的總條數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知∠AOB=,∠AOC=,OE是∠AOB內(nèi)部的一條射線,且OF平分∠AOE.
(1)若∠EOB=,求∠COF的度數(shù);
(2)若∠COF=,求∠EOB的度數(shù)(用含n的式子表示);
(3)當(dāng)射線OE繞點O逆時針旋轉(zhuǎn)到如圖2的位置時,請把圖補充完整;此時,∠COF與∠EOB有怎樣的數(shù)量關(guān)系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正比例函數(shù)與反比例函數(shù).
(1)證明:直線與雙曲線沒有交點;
(2)若將直線向上平移4個單位后與雙曲線恰好有且只有一個交點,求反比例函數(shù)的表達(dá)式和平移后的直線表達(dá)式;
(3)將(2)小題平移后的直線代表的函數(shù)記為,根據(jù)圖象直接寫出:對于負(fù)實數(shù),當(dāng)取何值時
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將正整數(shù)1至2018按一定規(guī)律排列如下表:
平移表中帶陰影的方框,方框中三個數(shù)的和可能是( 。
A. 2018 B. 2019 C. 2040 D. 2049
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com