【題目】如圖,AC是以AB為直徑的O的弦,點DO上的一點,過點DO的切線交直線AC于點E,AD平分BAE,若AB10,DE3,則AE的長為____________

【答案】1或9

【解析】(1)點E在AC的延長線上時,過點O作OFAC交AC于點F,如圖所示

∵OD=OA,

∴∠OAD=∠ODA,

AD平分∠BAE

∴∠OAD=∠ODA=∠DAC,

∴OD//AE,

∵DE是圓的切線,

∴DE⊥OD,

∴∠ODE=∠E=90o,

∴四邊形ODEF是矩形,

∴OF=DE,EF=OD=5,

又∵OF⊥AC,

∴AF=,

∴AE=AF+EF=5+4=9.

(2)當點E在CA的線上時,過點O作OFAC交AC于點F,如圖所示

同(1)可得:EF=OD=5,OF=DE=3,

在直角三角形AOF中,AF=,

∴AE=EF-AF=5-4=1.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知直線m∥n,點C是直線m上一點,點D是直線n上一點,CD與直線m、n不垂直,點P為線段CD的中點.

(1)操作發(fā)現(xiàn):直線l⊥m,分別交m、n于點A、B,當點B與點D重合時(如圖1),連結(jié)PA,請直接寫出線段PAPB的數(shù)量關系:   

(2)猜想證明:在圖1的情況下,把直線l向右平移到如圖2的位置,試問(1)中的PAPB

的關系式是否仍然成立?若成立,請給予證明;若不成立,請說明理由.

(3)延伸探究:在圖2的情況下,把直線l繞點A旋轉(zhuǎn),使得∠APB=90°(如圖3),若兩平行線m、n之間的距離為2k,求證:PAPB=kAB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把一個轉(zhuǎn)盤分成四等份,依次標上數(shù)字12、3、4,若連續(xù)自由轉(zhuǎn)動轉(zhuǎn)盤二次,指針指向的數(shù)字分別記作作為點的橫、縱坐標.

1】求點Aa,b)的個數(shù);

2】求點Aab)在函數(shù)的圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,E為對角線AC上一點,CE=CD,連接EB、ED,延長BEAD于點F.求證:DF2=EFBF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動,△DEF運動,并滿足:點E在邊BC上沿BC的方向運動,且DE始終經(jīng)過點A,EFAC交于M點.

(1)求證:△ABE∽△ECM;

(2)探究:在△DEF運動過程中,重疊部分能否構(gòu)成等腰三角形?若能,求出BE的長;若不能,請說明理由;

(3)當線段AM最短時,求重疊部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市旅游景區(qū)有A,B,C,D,E等著名景點,該市旅游部門統(tǒng)計繪制出2018年春節(jié)期間旅游情況統(tǒng)計圖(如圖),根據(jù)圖中信息解答下列問題:

(1)2018年春節(jié)期間,該市A,BC,D,E這五個景點共接待游客   萬人,扇形統(tǒng)計圖中E景點所對應的圓心角的度數(shù)是   ,并補全條形統(tǒng)計圖.

(2)甲乙兩個旅行團在A,BD三個景點中隨機選擇一個,這兩個旅行團選中同一景點的概率是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市計劃購進甲、乙兩種商品,兩種商品的進價、售價如下表:

商品

進價(元/件)

售價(元/件)

200

100

若用360元購進甲種商品的件數(shù)與用180元購進乙種商品的件數(shù)相同.

1)求甲、乙兩種商品的進價是多少元?

2)若超市銷售甲、乙兩種商品共50件,其中銷售甲種商品為件(),設銷售完50件甲、乙兩種商品的總利潤為元,求之間的函數(shù)關系式,并求出的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中直線y=x﹣2與y軸相交于點A,與反比例函數(shù)在第一象限內(nèi)的圖象相交于點B(m,2).

(1)求反比例函數(shù)的關系式;

(2)將直線y=x﹣2向上平移后與反比例函數(shù)圖象在第一象限內(nèi)交于點C,且ABC的面積為18,求平移后的直線的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,OA=OC,則由拋物線的特征寫出如下含有a、b、c三個字母的等式或不等式:①=﹣1;ac+b+1=0;abc>0;a﹣b+c>0.其中正確的個數(shù)是(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

同步練習冊答案