已知,如圖,拋物線y=x2+px+q與x軸相交于A、B兩點,與y軸交于點C,且OA≠OB,OA=OC,設拋物線的頂點為點P,直線PC與x軸的交點D恰好與點A關于y軸對稱.
(1)求p、q的值.
(2)在題中的拋物線上是否存在這樣的點Q,使得四邊形PAQD恰好為平行四邊形?若存在,求出點Q的坐標;若不存在,請說明理由.
(3)連接PA、AC.問:在直線PC上,是否存在這樣點E(不與點C重合),使得以P、A、E為頂點的三角形與△PAC相似?若存在,求出點E的坐標;若不存在,請說明理由.

【答案】分析:(1)先求出點C、D和A的坐標,后根據(jù)直線PC與x軸的交點D恰好與點A關于y軸對稱列方程組求解;
(2)假設存在這樣的Q點,再通過求解四邊形PAQD的邊AQ和PD的關系說明假設不成立;
(3)先假設存在滿足條件的點E,先求出直線AE的解析式,E點即是AE和CD的交點,最后證明△PAE與△PAC相似.
解答:解:(1)在拋物線y=x2+px+q中,
當x=0時,y=q.即:C點的坐標為(0,q).
因為:OA=OC,D點與A點關于y軸對稱.
所以:A點的坐標為(q,0);D點的坐標為(-q,0).
將A(q,0)代入y=x2+px+q中得:0=q2+pq+q
即:q(q+p+1)=0
所以:q=0,(不符合題意,舍去.)
      q+p=-1   ①
現(xiàn)在求點P的坐標,即拋物線y=x2+px+q頂點的坐標:
橫坐標:-;縱坐標:,
設直線CD的方程為y=kx+b
因為直線CD過C(0,q)、D(-q,0)兩點,所以有方程組
q=b,0=-qk+b.
解得:k=1,b=q.
所以直線CD的解析式為:y=x+q.
因為點P在直線CD上,
所以=-+q
解得:p=0(不符合題意,舍去)
       p=2   ②
又已經(jīng)求得的①、②兩等式得:p=2,q=-3.
因此;p、q的值分別為 2和-3.

 (2)∵p=2,q=-3.
∴拋物線的解析式為y=x2+2x-3,
A、D、C、P四點的坐標分別為(-3,0)、(3,0)、(0,-3)、(-1,-4).
直線CD的方程式為y=x-3,
設:過A點與直線CD平行的直線AQ的方程為:
        y=x+b(因兩直線平行,所以一次項系數(shù)相等)
因為點A(-3,0)在直線AQ上,將其代入y=x+b中得:0=-3+b,解得:b=3
所以:直線AQ的方程為:y=x+3
下面求直線AQ(y=x+3)與拋物線y=x2+2x-3的交點Q的坐標:
 解方程組y=x2+2x-3,y=x+3.得x1=2,y1=5;x2=-3,y2=0.
即:兩交點為A(-3,0);Q(2,5).
下面再求A、Q兩點距離和P、D兩點距離:從圖形可知
|AQ|=5,|PD|=4,
所以|AQ|≠|(zhì)PD|
這說明AQ與PD不相等,所以在拋物線上不存在滿足四邊形APDQ是平行四邊形的Q點.

 (3)存在E點,且E點坐標為(9,6).
具體求解過程如下:
設E點是直線PC上的點,且滿足AE垂直AP
求直線AP的方程,設直線AP的方程為y=kx+b
因為A(-3,0),P(-1,-4)兩點在直線AP上,所以有方程組
  0=-3k+b,-4=-k+b.解得:k=-2,b=-6.
所以直線AP的方程式為:y=-2x-6
因為直線AE垂直直線AC,所以兩直線一次項系數(shù)之積等于-1
所以,設直線AE方程式為y=x+b
A(-3,0)點在直線AE上,所以b=,
所以直線AE的方程式為y=x+,
直線AE與直線CD相交于E點,解兩直線方程組成的方程組得:x=9,y=6.
即E點的坐標為(9,6).
在三角形ACD中,因為OA=OD=OC,AD垂直CO,
所以∠ACD是直角,
在直角三角形APE中,AC是斜邊PE上的高,
所以△APC∽△EPA.
點評:本題考查了二次函數(shù)的知識,難度較大,注意各部分知識的熟練掌握與靈活運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知:如圖,拋物線y=ax2+bx+c與x軸交于A、B兩點,它們的橫坐標分別為-1和3,精英家教網(wǎng)與y軸交點C的縱坐標為3,△ABC的外接圓的圓心為點M.
(1)求這條拋物線的解析式;
(2)求圖象經(jīng)過M、A兩點的一次函數(shù)解析式;
(3)在(1)中的拋物線上是否存在點P,使過P、M兩點的直線與△ABC的兩邊AB、BC的交點E、F和點B所組成的△BEF和△ABC相似?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,拋物線的頂點為點D,與y軸相交于點A,直線y=ax+3與y軸也交于點A,矩形ABCO的頂點B在精英家教網(wǎng)此拋物線上,矩形面積為12,
(1)求該拋物線的對稱軸;
(2)⊙P是經(jīng)過A、B兩點的一個動圓,當⊙P與y軸相交,且在y軸上兩交點的距離為4時,求圓心P的坐標;
(3)若線段DO與AB交于點E,以點D、A、E為頂點的三角形是否有可能與以點D、O、A為頂點的三角形相似,如果有可能,請求出點D坐標及拋物線解析式;如果不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•寧化縣質(zhì)檢)已知:如圖,拋物線y=ax2+bx+c與x軸交于點A(1-
3
,0)和點B,將拋物線沿x軸向上翻折,頂點P落在點P′(1,3)處.
(1)求原拋物線的解析式;
(2)在原拋物線上,是否存在一點,與它關于原點對稱的點也在該拋物線上?若存在,求滿足條件的點的坐標;若不存在,說明理由.
(3)學校舉行班徽設計比賽,九年級(5)班的小明在解答此題時頓生靈感:過點P′作x軸的平行線交拋物線于C、D兩點,將翻折后得到的新圖象在直線CD以上的部分去掉,設計成一個“W”型的班徽,“5”的拼音開頭字母為W,“W”圖案似大鵬展翅,寓意深遠;而且小明通過計算驚奇的發(fā)現(xiàn)這個“W”圖案的高與寬(CD)的比非常接近黃金分割比
5
-1
2
(約等于0.618).請你計算這個“W”圖案的高與寬的比到底是多少?(參考數(shù)據(jù):
5
≈2.236
,
6
≈2.449
,結(jié)果精確到0.001)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,如圖,拋物線y=ax2-2ax+c(a≠0)與y軸交于點C(0,4),與x軸交于點A,B,點A的坐標為(4,0).
(1)求該拋物線的解析式;
(2)若點M在拋物線上,且△ABC與△ABM的面積相等,直接寫出點M的坐標;
(3)點Q是線段AB上的動點,過點Q作QE∥AC,交BC于點E,連接CQ.當△CQE的面積最大時,求點Q的坐標;
(4)若平行于x軸的動直線l與線段AC交于點F,點D的坐標為(2,0).問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請求出直線l的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,拋物線y=x2+px+q與x軸相交于A、B兩點,與y軸交于點C,且OA≠OB,OA=OC,設拋物線的頂點為點P,直線PC與x軸的交點D恰好與點A關于y軸對稱.
(1)求p、q的值.
(2)在題中的拋物線上是否存在這樣的點Q,使得四邊形PAQD恰好為平行四邊形?若存在,求出點Q的坐標;若不存在,請說明理由.
(3)連接PA、AC.問:在直線PC上,是否存在這樣點E(不與點C重合),使得以P、A、E為頂點的三角形與△PAC相似?若存在,求出點E的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案