【題目】已知△ABC是等腰三角形,且∠A=40°,那么∠ACB的外角的度數(shù)是
A. 110° B. 140° C. 110°或140° D. 以上都不對
【答案】D
【解析】
利用等腰三角形的性質(zhì),得到兩底角相等,結(jié)合三角形內(nèi)角與外角的關(guān)系:三角形的任一外角等于和它不相鄰的兩個內(nèi)角之和,可直接得到結(jié)果.
解:∵等腰三角形兩底角相等,三角形的任一外角等于和它不相鄰的兩個內(nèi)角之和,
∴當(dāng)頂角∠A=40°時,則∠ACB=∠B=(180°-40)=70°,
∴∠ACB的外角的度數(shù)是180°-70°=110°,
∴當(dāng)?shù)捉恰?/span>A=40°時,∠B=40°,則∠ACB的外角的度數(shù)為2∠A=2×40=80°,
當(dāng)?shù)捉恰?/span>A=40°時,∠ACB=40°,則∠ACB的外角的度數(shù)為180-40=140°.
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某大樓的頂部有一塊廣告牌CD,小李在山坡的坡腳A處測得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45°,已知sin∠BAH= ,AB=10米,AE=15米.
(1)求點B距水平面AE的高度BH;
(2)求廣告牌CD的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,等邊△ABC為⊙O的內(nèi)接三角形,點G和點F在⊙O上且位于點A的兩側(cè),連接BF、CG交于點E,且BF=CG.
(1)求證:∠BEC=120°;
(2)如圖2,取BC邊中點D,連接AE、DE,求證:AE=2DE;
(3)如圖3,在(2)的條件下,過點A作⊙O的切線交BF的延長線于點H,若AE=AH=4,請求出⊙O的半徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,長方形BCDE的各邊分別平行于x軸或y軸,物體甲和物體乙分別由點A(2, 0)同時出發(fā),沿長方形BCDE的邊作環(huán)繞運動,物體甲按逆時針方向以1個單位長度秒勻速運動,物體乙按順時針方向以2個單位長度秒勻速運動,則兩個物體運動后的第2020次相遇點的坐標(biāo)是( )
A.(2,0)B.(-1,-1)C.( -2,1)D.(-1, 1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3cm,BC=6cm.點P從點D出發(fā)向點A運動,運動到點A即停止;同時,點Q從點B出發(fā)向點C運動,運動到點C即停止,點P、Q的速度都是1cm/s.連接PQ、AQ、CP.設(shè)點P、Q運動的時間為ts.
當(dāng)t為何值時,四邊形ABQP是矩形;
當(dāng)t為何值時,四邊形AQCP是菱形;
分別求出(2)中菱形AQCP的周長和面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在扇形AOB中,∠AOB=90°,點C為OA的中點,CE⊥OA交弧AB于點E,以點O為圓心,OC的長為半徑作弧CD交OB于點D,若OA=4,則陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= (m≠0)的圖象交于二、四象限內(nèi)的A、B兩點,與x軸交于C點,點B的坐標(biāo)為(12,n)
, OA=10,E為x軸負(fù)半軸上一點,且tan∠AOE= .
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)延長AO交雙曲線于點D,連接CD,求△ACD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一蓄水池中有水40m3,如果每分鐘放出2m3的水,水池里的水量與放水時間有如下關(guān)系:
下列數(shù)據(jù)中滿足此表格的是( )
A. 放水時間8分鐘,水池中水量25m3
B. 放水時問20分鐘,水池中水量4m3
C. 放水時間26分鐘,水池中水量14m3
D. 放水時間18分鐘,水池中水量4m3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com