【題目】如圖,已知二次函數(shù)的圖像與軸的一個(gè)交點(diǎn)為 ,與軸的交點(diǎn)為,過的直線為.
(1)求二次函數(shù)的解析式及點(diǎn)的坐標(biāo);
(2)直接寫出滿足時(shí),的取值 ;
(3)在兩坐標(biāo)軸上是否存在點(diǎn),使得是以為底邊的等腰三角形?若存在,求出的坐標(biāo);若不存在,說明理由.
【答案】(1),;(2)或;(3),
【解析】
(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式,根據(jù)自變量為零,可得點(diǎn)坐標(biāo);
(2)根據(jù)題意可知,即,再根據(jù)一次函數(shù)圖象在上方法人部分是不等式的解集,可得答案;
(3)根據(jù)線段垂直平分線上的點(diǎn)到線段兩點(diǎn)間的距離相等,可得在線段的垂直平分線上,根據(jù)直線,可得的垂直平分線,根據(jù)自變量來為零,可得在軸上,根據(jù)函數(shù)值為零,可得在軸上.
(1)解:將代入得:
∴,
(2)
即:
即:時(shí),或
(3)直線的解析式為,
的中點(diǎn)為,
的垂直平分線為,
當(dāng)時(shí),,,
當(dāng)時(shí),,.
綜上所述:,,使得是以為底邊的等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O點(diǎn)是△ABC與△D1E1F1的位似中心,△ABC的周長(zhǎng)為1.若D1、E1、F1分別是線段OA、OB、OC的中點(diǎn),則△D1E1F1的周長(zhǎng)為;若OD2=OA、OE2=OB、OF2=OC,則△D2E2F2的周長(zhǎng)為;…若ODn=OA、OEn=OB、OFn=OC,則△DnEnFn的周長(zhǎng)為__________.(用正整數(shù)n表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AM是△ABC的中線,點(diǎn)D是線段AM上一點(diǎn)(不與點(diǎn)A重合).過點(diǎn)D作KD∥AB,交BC于點(diǎn)K,過點(diǎn)C作CE∥AM,交KD的延長(zhǎng)線于點(diǎn)E,連接AE、BD.
(1)求證:△ABM∽△EKC;
(2)求證:ABCK=EKCM;
(3)判斷線段BD、AE的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y1=ax2+bx+c(ab≠0)經(jīng)過原點(diǎn),頂點(diǎn)為A.
(1)若點(diǎn)A的坐標(biāo)是(﹣2,﹣4),
①求拋物線的解析式;
②把拋物線在第三象限之間的部分圖象記為圖象G,若直線y=﹣x+n與圖象G有兩個(gè)不同的交點(diǎn),求n的取值范圍;
(2)若直線y2=ax+b經(jīng)過點(diǎn)A,當(dāng)1<x<2時(shí),比較y1與y2的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y1=﹣x2+mx+n,直線y2=kx+b,y1的對(duì)稱軸與y2交于點(diǎn)A(﹣1,5),點(diǎn)A與y1的頂點(diǎn)B的距離是4.
(1)求y1的解析式;
(2)若y2隨著x的增大而增大,且y1與y2都經(jīng)過x軸上的同一點(diǎn),求y2的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電器超市銷售每臺(tái)進(jìn)價(jià)分別為2000元、1700元的A、B兩種型號(hào)的空調(diào),如表是近兩周的銷售情況:
銷售時(shí)段 | 銷售數(shù)量 | 銷售收入 | |
A種型號(hào) | B種型號(hào) | ||
第一周 | 3臺(tái) | 5臺(tái) | 18000元 |
第二周 | 4臺(tái) | 10臺(tái) | 31000元 |
(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷售總收入進(jìn)貨成本)
(1)求A、B兩種型號(hào)的空調(diào)的銷售單價(jià);
(2)若超市準(zhǔn)備用不多于54000元的金額再采購(gòu)這兩種型號(hào)的空調(diào)共30臺(tái),求A種型號(hào)的空調(diào)最多能采購(gòu)多少臺(tái)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是一塊直角三角板,且∠C=90°,∠A=30°,現(xiàn)將圓心為點(diǎn)O的圓形紙片放置在三角板內(nèi)部,將圓形紙片沿著三角板的內(nèi)部邊緣滾動(dòng)1周,回到起點(diǎn)位置時(shí)停止,若BC=7+2,圓形紙片的半徑為2,求圓心O運(yùn)動(dòng)的路徑長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一直角坐標(biāo)系中,函數(shù)y=mx+m和函數(shù)y=mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是( 。
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com